Monte Carlo study of temperature-dependent non-diffusive thermal transport in Si nanowires

被引:6
作者
Ma, Lei [1 ,2 ]
Mei, Riguo [1 ,2 ]
Liu, Mengmeng [3 ]
Zhao, Xuxin [2 ]
Wu, Qixing [2 ]
Sun, Hongyuan [2 ]
机构
[1] Shenzhen Univ, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Chem & Environm Engn, Key Lab New Lithium Ion Batteries & Mesoporous Ma, Shenzhen 518060, Peoples R China
[3] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94107 USA
基金
中国国家自然科学基金;
关键词
Phonon; Nanowires; Silicon; Thermal transport; SILICON NANOWIRES; HEAT-CONDUCTION; SIMULATION; PERFORMANCE;
D O I
10.1016/j.applthermaleng.2017.04.136
中图分类号
O414.1 [热力学];
学科分类号
摘要
Non-diffusive thermal transport has gained extensive research interest recently due to its important implications on fundamental understanding of material phonon mean free path distributions and many nanoscale energy applications. In this work, we systematically investigate the role of boundary scattering and nanowire length on the nondiffusive thermal transport in thin silicon nanowires by rigorously solving the phonon Boltzmann transport equation using a variance reduced Monte Carlo technique across a range of temperatures. The simulations use the complete phonon dispersion and spectral lifetime data obtained from first-principle density function theory calculations as input without any adjustable parameters. Our BTE simulation results show that the nanowire length plays an important role in determining the thermal conductivity of silicon nanowires. In addition, our simulation results suggest significant phonon confinement effect for the previously measured silicon nanowires. These findings are important for a comprehensive understanding of microscopic non-diffusive thermal transport in silicon nanowires. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:17 / 21
页数:5
相关论文
共 46 条
[31]   An alternative approach to efficient simulation of micro/nanoscale phonon transport [J].
Peraud, Jean-Philippe M. ;
Hadjiconstantinou, Nicolas G. .
APPLIED PHYSICS LETTERS, 2012, 101 (15)
[32]   Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations [J].
Peraud, Jean-Philippe M. ;
Hadjiconstantinou, Nicolas G. .
PHYSICAL REVIEW B, 2011, 84 (20)
[33]   Thermal conductivity in thin silicon nanowires: Phonon confinement effect [J].
Ponomareva, Inna ;
Srivastava, Deepak ;
Menon, Madhu .
NANO LETTERS, 2007, 7 (05) :1155-1159
[34]  
Schaffler F., 2006, J PHYS D, V39, pR387
[35]  
Sondheimer E H, 1952, MEAN FREE PATH ELECT
[36]   Coaxial silicon nanowires as solar cells and nanoelectronic power sources [J].
Tian, Bozhi ;
Zheng, Xiaolin ;
Kempa, Thomas J. ;
Fang, Ying ;
Yu, Nanfang ;
Yu, Guihua ;
Huang, Jinlin ;
Lieber, Charles M. .
NATURE, 2007, 449 (7164) :885-U8
[37]   Thermal transport in suspended silicon membranes measured by laser-induced transient gratings [J].
Vega-Flick, A. ;
Duncan, R. A. ;
Eliason, J. K. ;
Cuffe, J. ;
Johnson, J. A. ;
Peraud, J. -P. M. ;
Zeng, L. ;
Lu, Z. ;
Maznev, A. A. ;
Wang, E. N. ;
Alvarado-Gil, J. J. ;
Sledzinska, M. ;
Sotomayor Torres, C. M. ;
Chen, G. ;
Nelson, K. A. .
AIP ADVANCES, 2016, 6 (12)
[38]   Molecular dynamics simulation of thermal conductivity of silicon nanowires [J].
Volz, SG ;
Chen, G .
APPLIED PHYSICS LETTERS, 1999, 75 (14) :2056-2058
[39]   Violation of Fourier's law and anomalous heat diffusion in silicon nanowires [J].
Yang, Nuo ;
Zhang, Gang ;
Li, Baowen .
NANO TODAY, 2010, 5 (02) :85-90
[40]   Thermal conductivity modeling of core-shell and tubular nanowires [J].
Yang, RG ;
Chen, G ;
Dresselhaus, MS .
NANO LETTERS, 2005, 5 (06) :1111-1115