Monte Carlo study of temperature-dependent non-diffusive thermal transport in Si nanowires

被引:6
作者
Ma, Lei [1 ,2 ]
Mei, Riguo [1 ,2 ]
Liu, Mengmeng [3 ]
Zhao, Xuxin [2 ]
Wu, Qixing [2 ]
Sun, Hongyuan [2 ]
机构
[1] Shenzhen Univ, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Chem & Environm Engn, Key Lab New Lithium Ion Batteries & Mesoporous Ma, Shenzhen 518060, Peoples R China
[3] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94107 USA
基金
中国国家自然科学基金;
关键词
Phonon; Nanowires; Silicon; Thermal transport; SILICON NANOWIRES; HEAT-CONDUCTION; SIMULATION; PERFORMANCE;
D O I
10.1016/j.applthermaleng.2017.04.136
中图分类号
O414.1 [热力学];
学科分类号
摘要
Non-diffusive thermal transport has gained extensive research interest recently due to its important implications on fundamental understanding of material phonon mean free path distributions and many nanoscale energy applications. In this work, we systematically investigate the role of boundary scattering and nanowire length on the nondiffusive thermal transport in thin silicon nanowires by rigorously solving the phonon Boltzmann transport equation using a variance reduced Monte Carlo technique across a range of temperatures. The simulations use the complete phonon dispersion and spectral lifetime data obtained from first-principle density function theory calculations as input without any adjustable parameters. Our BTE simulation results show that the nanowire length plays an important role in determining the thermal conductivity of silicon nanowires. In addition, our simulation results suggest significant phonon confinement effect for the previously measured silicon nanowires. These findings are important for a comprehensive understanding of microscopic non-diffusive thermal transport in silicon nanowires. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:17 / 21
页数:5
相关论文
共 46 条
[1]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[2]   Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices [J].
Chen, G .
PHYSICAL REVIEW B, 1998, 57 (23) :14958-14973
[3]  
Chen G., 2005, PAPPAL SER MECH ENG
[4]   Thermal conductance of thin silicon nanowires [J].
Chen, Renkun ;
Hochbaum, Allon I. ;
Murphy, Padraig ;
Moore, Joel ;
Yang, Peidong ;
Majumdar, Arun .
PHYSICAL REVIEW LETTERS, 2008, 101 (10)
[5]   Monte Carlo simulation of silicon nanowire thermal conductivity [J].
Chen, YF ;
Li, DY ;
Lukes, JR ;
Majumdar, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2005, 127 (10) :1129-1137
[6]   Variational approach to solving the spectral Boltzmann transport equation in transient thermal grating for thin films [J].
Chiloyan, Vazrik ;
Zeng, Lingping ;
Huberman, Samuel ;
Maznev, Alexei A. ;
Nelson, Keith A. ;
Chen, Gang .
JOURNAL OF APPLIED PHYSICS, 2016, 120 (02)
[7]   Variational approach to extracting the phonon mean free path distribution from the spectral Boltzmann transport equation [J].
Chiloyan, Vazrik ;
Zeng, Lingping ;
Huberman, Samuel ;
Maznev, Alexei A. ;
Nelson, Keith A. ;
Chen, Gang .
PHYSICAL REVIEW B, 2016, 93 (15)
[8]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152
[9]   Heat transport in silicon from first-principles calculations [J].
Esfarjani, Keivan ;
Chen, Gang ;
Stokes, Harold T. .
PHYSICAL REVIEW B, 2011, 84 (08)
[10]   Thermal conductivity of silicon nanowire arrays with controlled roughness [J].
Feser, Joseph P. ;
Sadhu, Jyothi S. ;
Azeredo, Bruno P. ;
Hsu, Keng H. ;
Ma, Jun ;
Kim, Junhwan ;
Seong, Myunghoon ;
Fang, Nicholas X. ;
Li, Xiuling ;
Ferreira, Placid M. ;
Sinha, Sanjiv ;
Cahill, David G. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (11)