Tsallis versus Renyi entropic form for systems with q-exponential behaviour:: the case of dissipative maps

被引:17
作者
Johal, RS
Tirnakli, U [1 ]
机构
[1] Ege Univ, Fac Sci, Dept Phys, TR-35100 Bornova, Turkey
[2] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
关键词
generalized entropies; nonextensivity; dynamical systems;
D O I
10.1016/j.physa.2003.09.064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Maximum entropy principle does not seem to distinguish between the use of Tsallis and Renyi entropies as either of them may be used to derive similar kind of q-exponential distributions. In this paper, we address the question whether the Renyi entropy is equally suitable to describe those systems with q-exponential behaviour, where the use of the Tsallis entropy is relevant. We discuss a specific class of dynamical systems, namely, one-dimensional dissipative maps at chaos threshold and make our study from two aspects: (i) power-law sensitivity to the initial conditions and the rate of entropy increase, (ii) generalized bit cumulants. We present evidence that the Tsallis entropy is more appropriate entropic form for such studies as compared to Renyi form. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:487 / 496
页数:10
相关论文
共 48 条
[1]   Stability of Tsallis entropy and instabilities of Renyi and normalized Tsallis entropies:: A basis for q-exponential distributions -: art. no. 046134 [J].
Abe, S .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[2]   Charged particle production in proton-, deuteron-, oxygen- and sulphur-nucleus collisions at 200 GeV per nucleon [J].
Alber, T ;
Appelshauser, H ;
Bachler, J ;
Bartke, J ;
Bialkowska, H ;
Bloomer, MA ;
Bock, R ;
Braithwaite, WJ ;
Brinkmann, D ;
Brockmann, R ;
Buncic, P ;
Chan, P ;
Cramer, JG ;
Cramer, PB ;
Derado, I ;
Eberlein, B ;
Eckardt, V ;
Eschke, J ;
Favuzzi, C ;
Ferenc, D ;
Fleischmann, B ;
Foka, P ;
Freund, P ;
Fuchs, M ;
Gazdzicki, M ;
Gladysz, E ;
Grebieszkow, J ;
Gunther, J ;
Harris, JW ;
Hoffmann, M ;
Jacobs, P ;
Kabana, S ;
Kadija, K ;
Keidel, R ;
Kowalski, M ;
Kuhmichel, A ;
Lave, F ;
Lee, JY ;
Ljubicic, A ;
Margetis, S ;
Mitchell, JT ;
Morse, R ;
Nappi, E ;
Odyniec, G ;
Paic, G ;
Panagiotou, AD ;
Petridis, A ;
Piper, A ;
Posa, F ;
Poskanzer, AM .
EUROPEAN PHYSICAL JOURNAL C, 1998, 2 (04) :643-659
[3]  
[Anonymous], 2001, NONEXTENSIVE STAT ME
[4]  
Baldovin F, 2002, PHYS REV E, V66, DOI [10.1103/PhysRevE.66.045104, 10.1103/PhysrevE.66.045104]
[5]  
Beck C., 1993, THERMODYNAMICS CHAOT
[6]   Non-Markovian processes with long-range correlations:: Fractal dimension analysis [J].
Cáceres, MO .
BRAZILIAN JOURNAL OF PHYSICS, 1999, 29 (01) :125-135
[7]   Power-law sensitivity to initial conditions within a logisticlike family of maps: Fractality and nonextensivity [J].
Costa, UMS ;
Lyra, ML ;
Plastino, AR ;
Tsallis, C .
PHYSICAL REVIEW E, 1997, 56 (01) :245-250
[8]  
CURADO EME, 1991, J PHYS A-MATH GEN, V24, P3187
[9]  
Curado EMF, 1999, BRAZ J PHYS, V29, P36, DOI 10.1590/S0103-97331999000100003
[10]   GENERALIZED STATISTICAL-MECHANICS - CONNECTION WITH THERMODYNAMICS [J].
CURADO, EMF ;
TSALLIS, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (02) :L69-L72