Motivic decompositions of twisted flag varieties and representations of Hecke-type algebras

被引:5
作者
Neshitov, Alexander [1 ]
Petrov, Victor [2 ]
Semenov, Nikita [3 ]
Zainoulline, Kirill [4 ]
机构
[1] Univ Southern Calif, Dept Math, 3620 S Vermont Ave, Los Angeles, CA 90089 USA
[2] St Petersburg State Univ, 29B Line 14th, St Petersburg 199178, Russia
[3] Ludwig Maximilians Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
[4] Univ Ottawa, Dept Math & Stat, 585 King Edward Ave, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Linear algebraic group; Torsor; Flag variety; Equivariant oriented cohomology; Motivic decomposition; Hecke algebra; ORIENTED COHOMOLOGY; SCHUBERT CALCULUS; INVARIANTS; TORSION;
D O I
10.1016/j.aim.2018.10.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a split semisimple linear algebraic group over a field Ice. Let E be a G-torsor over a field extension k of k(0). Let h be an algebraic oriented cohomology theory in the sense of Levine-Morel. Consider a twisted form E/B of the variety of Borel subgroups G/B over k. Following the Kostant-Kumar results on equivariant cohomology of flag varieties we establish an isomorphism between the Grothendieck groups of the h-motivic subcategory generated by E/B and the category of finitely generated projective modules of certain Hecke-type algebra H which depends on the root datum of G, on the torsor E and on the formal group law of the theory h. In particular, taking h to be the Chow groups with finite coefficients F-p and E to be a generic G-torsor we prove that all finitely generated projective indecomposable submodules of an affine nil-Hecke algebra H of G with coefficients in F-p, are isomorphic to each other and correspond to the (non-graded) generalized Rost-Voevodsky motive for (G, p). (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:791 / 818
页数:28
相关论文
共 32 条
[1]  
[Anonymous], 2013, GRADUATE STUDIES MAT
[2]  
[Anonymous], 2003, U LECT SERIES
[3]  
Bernstein IN., 1973, Russian Math. Surveys, V28, P1, DOI [10.1070/RM1973v028n03ABEH001557, DOI 10.1070/RM1973V028N03ABEH001557]
[4]   SCHUBERT CALCULUS IN COMPLEX COBORDISM [J].
BRESSLER, P ;
EVENS, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 331 (02) :799-813
[5]   THE SCHUBERT CALCULUS, BRAID RELATIONS, AND GENERALIZED COHOMOLOGY [J].
BRESSLER, P ;
EVENS, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 317 (02) :799-811
[6]  
Brion M., 1997, Journal of Transformation Groups, V2, P225, DOI [10.1007/BF01234659, DOI 10.1007/BF01234659]
[7]   Chow motives of twisted flag varieties [J].
Calmes, B. ;
Petrov, V. ;
Semenov, N. ;
Zainoulline, K. .
COMPOSITIO MATHEMATICA, 2006, 142 (04) :1063-1080
[8]  
Calmes B., ARXIV13120019
[9]  
Calmes B., 2015, Doc. Math., Extra Volume: Alexander S. Merkurjev's Sixtieth Birthday, P113
[10]   A coproduct structure on the formal affine Demazure algebra [J].
Calmes, Baptiste ;
Zainoulline, Kirill ;
Zhong, Changlong .
MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (3-4) :1191-1218