Finite Element Approximation of the Minimal Eigenvalue and the Corresponding Positive Eigenfunction of a Nonlinear Sturm-Liouville Problem

被引:1
作者
Korosteleva, D. M. [1 ]
Solov'ev, P. S. [2 ]
Solov'ev, S. I. [2 ]
机构
[1] Kazan State Power Engn Univ, Kazan 420066, Russia
[2] Kazan Volga Reg Fed Univ, Kazan 420008, Russia
基金
俄罗斯科学基金会;
关键词
radio-frequency induction discharge; eigenvalue; positive eigenfunction; nonlinear eigenvalue problem; ordinary differential equation; finite element method; SYMMETRIC SPECTRAL PROBLEMS; BUBNOV-GALERKIN METHOD; ITERATIVE METHODS; EIGENVIBRATIONS; ERROR; SUPERCONVERGENCE; PERTURBATIONS; BEAM;
D O I
10.1134/S1995080219110179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of finding the minimal eigenvalue and the corresponding positive eigenfunction of the nonlinear Sturm-Liouville problem for the ordinary differential equation with coefficients nonlinear depending on a spectral parameter is investigated. This problem arises in modeling the plasma of radio-frequency discharge at reduced pressures. A sufficient condition for the existence of a minimal eigenvalue and the corresponding positive eigenfunction of the nonlinear Sturm- Liouville problem is established. The original differential eigenvalue problem is approximated by the finite element method with Lagrangian finite elements of arbitrary order on a uniform grid. The error estimates of the approximate eigenvalue and the approximate positive eigenfunction to exact ones are proved. Investigations of this paper generalize well known results for the Sturm-Liouville problem with linear entrance on the spectral parameter.
引用
收藏
页码:1959 / 1966
页数:8
相关论文
共 64 条
  • [1] Abdullin I. Sh., 2000, Radio-Frequency Plasma-Jet Material Processing at Low Pressures
  • [2] [Anonymous], 2013, CAN COMMUN DIS REP, V39, pACS
  • [3] [Anonymous], 1991, RUSS J NUMER ANAL M
  • [4] [Anonymous], RES J APPL SCI, DOI 10.3923/rjasci.2015.428.435
  • [5] Computation of 3D vertex singularities for linear elasticity:: Error estimates for a finite element method on graded meshes
    Apel, T
    Sändig, AM
    Solov'ev, SI
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (06): : 1043 - 1070
  • [6] Badriev IB, 2018, LOBACHEVSKII J MATH, V39, P448, DOI 10.1134/S1995080218030046
  • [7] Mathematical Simulation of the Problem of the Pre-Critical Sandwich Plate Bending in Geometrically Nonlinear One Dimensional Formulation
    Badriev, I. B.
    Banderov, V. V.
    Makarov, M. V.
    [J]. WINTER SCHOOL ON CONTINUOUS MEDIA MECHANICS, 2017, 208
  • [8] On the Finite Element Approximations of Mixed Variational Inequalities of Filtration Theory
    Badriev, I. B.
    Banderov, V. V.
    Lavrentyeva, E. E.
    Pankratova, O. V.
    [J]. 11TH INTERNATIONAL CONFERENCE ON MESH METHODS FOR BOUNDRY-VALUE PROBLEMS AND APPLICATIONS, 2016, 158
  • [9] Badriev I. B., 2013, Applied Mechanics and Materials, V392, P188, DOI 10.4028/www.scientific.net/AMM.392.188
  • [10] Badriev I. B., 2013, Applied Mechanics and Materials, V392, P183, DOI 10.4028/www.scientific.net/AMM.392.183