Some remarks on the Fefferman-Stein inequality

被引:21
作者
Lerner, Andrei K. [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2010年 / 112卷
关键词
WEIGHTED NORM INEQUALITIES; SHARP MAXIMAL FUNCTIONS; SINGULAR-INTEGRALS; SPACES; OPERATORS; BOUNDEDNESS;
D O I
10.1007/s11854-010-0032-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Fefferman-Stein inequality related to a function f and the sharp maximal function f(#) on a Banach function space X. It is proved that this inequality is equivalent to a certain boundedness property of the Hardy-Littlewood maximal operator M. The latter property is shown to be self-improving. We apply our results in several directions. First, we show the existence of nontrivial spaces X for which the lower operator norm of M is equal to 1. Second, in the case when X is the weighted Lebesgue space L(p) (w), we obtain a new approach to the results of Sawyer and Yabuta concerning the C(p) condition.
引用
收藏
页码:329 / 349
页数:21
相关论文
共 28 条