On the recursive sequence xn+1 = α + β xn+ γ xn -1/Bxn + Cxn -1

被引:12
作者
El-Afifi, MM [1 ]
机构
[1] Al Azhar Univ, Dept Math, Fac Sci, Cairo 11884, Egypt
关键词
difference equations; attractivity; global asymptotic stability; semicycle;
D O I
10.1016/S0096-3003(02)00800-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the global character of solutions of the equation in the title with nonnegative parameters and positive initial conditions. We give a detailed description of the semicycles of solutions and prove that the equilibrium of the equation is globally asymptotically stable. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:617 / 628
页数:12
相关论文
共 12 条
[1]   On the recursive sequence xn+1=α+xn-1/xn [J].
Amleh, AM ;
Grove, EA ;
Ladas, G ;
Georgiou, DA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (02) :790-798
[2]  
[Anonymous], 1995, J DIFFER EQUATIONS A
[3]   How to choose modified moments? [J].
Beckermann, B ;
Bourreau, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 98 (01) :81-98
[4]   On the recursive sequence xn+1=α+βxn/Bxn+Cxn-1 [J].
Cunningham, K ;
Kulenovic, MRS ;
Ladas, G ;
Valicenti, SV .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (07) :4603-4614
[5]  
Gibbons C.H., 2000, Math. Sci. Res. Hot-line, V4, P1
[6]  
KARAOSTAS G, 1993, EQUATIONS DYNAM SYST, V1, P194
[7]   ON RATIONAL RECURSIVE SEQUENCES [J].
KOCIC, VL ;
LADAS, G ;
RODRIGUES, IW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 173 (01) :127-157
[8]  
KOCIC VL, 1993, GLOBAL BEHAV NONLINE
[9]  
Kulenovic M. R. S., 1998, Mathematical Sciences Research Hot-Line, V2, P1
[10]  
KULENOVIC M. R. S., 2001, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures