This study evaluated potential effects of organic trace mineral supplementation on reproductive measures in lactating dairy cows. Cows were blocked by breed and randomly assigned at dry-off to receive inorganic trace mineral supplementation (control; n = 32) or to have a portion of supplemental inorganic Zn, Cu, Mn, and Co replaced with an equivalent amount of the organic forms of these minerals (treatment; n = 31). Trace minerals were provided through control or treatment premixes fed at 100 g . cow(-1) . d(-1). Premixes were fed to dry cows (range = 40 to 72 d before calving) in 1.8 kg . cow(-1) . d(-1) concentrate pellets through a computer feeder to provide 40, 26, 70, and 100% of supplemented Zn, Mn, Cu, and Co, respectively, and to lactating cows (range = 69 to 116 d after calving) in a total mixed ration to provide 22, 14, 40, and 100% of supplemented Zn, Mn, Cu, and Co, respectively. Treatment increased milk production at wk 14 (P = 0.047) postcalving, milk urea N content (P = 0.039), and BW loss from calving to 1 mo postcalving (P = 0.040), and decreased milk fat percentage (P = 0.045) and BCS (P = 0.048). Treatment tended to increase milk production at wk 13 (P = 0.089) postcalving and endometrial tissue concentrations of Fe (P = 0.070), BW at mo 1 (P = 0.056), and milk protein percentage (P = 0.064). Treatment did not affect (P > 0.1) DMI, health events, first-wave follicular dynamics, first cycle luteal measures, embryo quality, liver trace mineral concentrations, or luteal trace mineral concentrations. Cows with a rectal temperature = 39 C at the time of AI had a smaller percentage of fertilized entities (P < 0.001). However, of the entities that were fertilized, the percentage of viable embryos, embryo quality, accessory sperm number, and embryo cell number were not affected (P > 0.1) by treatment. We conclude that replacing a portion of inorganic supplemental trace minerals with an equivalent amount of these organic trace minerals (Zn, Mn, Cu, and Co) increased milk production in mid-lactation, but did not affect postpartum follicular dynamics, embryo quality, or liver and luteal trace mineral concentrations.