Embracing a new paradigm for temperature sensitivity of soil microbes

被引:62
作者
Alster, Charlotte J. [1 ]
von Fischer, Joseph C. [2 ,3 ]
Allison, Steven D. [1 ,4 ]
Treseder, Kathleen K. [1 ]
机构
[1] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA
[2] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA
[3] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA
[4] Colorado State Univ, Dept Earth Syst Sci, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
activation energy; Arrhenius; macromolecular rate theory; Q(10); soil microbes; temperature sensitivity; thermal adaptation; ENTROPY-ENTHALPY COMPENSATION; MACROMOLECULAR RATE THEORY; CONFORMATIONAL FLEXIBILITY; BACTERIAL-GROWTH; RESPIRATION; DEPENDENCE; CARBON; ADAPTATION; DECOMPOSITION; RESPONSES;
D O I
10.1111/gcb.15053
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The temperature sensitivity of soil processes is of major interest, especially in light of climate change. Originally formulated to explain the temperature dependence of chemical reactions, the Arrhenius equation, and related Q(10) temperature coefficient, has a long history of application to soil biological processes. However, empirical data indicate that Q(10) and Arrhenius model are often poor metrics of temperature sensitivity in soils. In this opinion piece, we aim to (a) review alternative approaches for characterizing temperature sensitivity, focusing on macromolecular rate theory (MMRT); (b) provide strategies and tools for implementing a new temperature sensitivity framework; (c) develop thermal adaptation hypotheses for the MMRT framework; and (d) explore new questions and opportunities stemming from this paradigm shift. Microbial ecologists should consider developing and adopting MMRT as the basis for predicting biological rates as a function of temperature. Improved understanding of temperature sensitivity in soils is particularly pertinent as microbial response to temperature has a large impact on global climate feedbacks.
引用
收藏
页码:3221 / 3229
页数:9
相关论文
共 69 条
[1]   Temperature sensitivities of extracellular enzyme Vmax and Km across thermal environments [J].
Allison, Steven D. ;
Romero-Olivares, Adriana L. ;
Lu, Ying ;
Taylor, John W. ;
Treseder, Kathleen K. .
GLOBAL CHANGE BIOLOGY, 2018, 24 (07) :2884-2897
[2]   A meta-analysis of temperature sensitivity as a microbial trait [J].
Alster, Charlotte J. ;
Weller, Zachary D. ;
von Fischer, Joseph C. .
GLOBAL CHANGE BIOLOGY, 2018, 24 (09) :4211-4224
[3]   Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory [J].
Alster, Charlotte J. ;
Baas, Peter ;
Wallenstein, Matthew D. ;
Johnson, Nels G. ;
von Fischer, Joseph C. .
FRONTIERS IN MICROBIOLOGY, 2016, 7
[4]   Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration [J].
Alster, Charlotte J. ;
Koyama, Akihiro ;
Johnson, Nels G. ;
Wallenstein, Matthew D. ;
von Fischer, Joseph C. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2016, 121 (06) :1420-1433
[5]   On the Temperature Dependence of Enzyme-Catalyzed Rates [J].
Arcus, Vickery L. ;
Prentice, Erica J. ;
Hobbs, Joanne K. ;
Mulholland, Adrian J. ;
Van der Kamp, Marc W. ;
Pudney, Christopher R. ;
Parker, Emily J. ;
Schipper, Louis A. .
BIOCHEMISTRY, 2016, 55 (12) :1681-1688
[6]   Temperature sensitivity of soil microbial activity modeled by the square root equationas a unifying model to differentiate between direct temperature effects and microbial community adaptation [J].
Baath, Erland .
GLOBAL CHANGE BIOLOGY, 2018, 24 (07) :2850-2861
[7]   Shifts in microbial trophic strategy explain different temperature sensitivity of CO2 flux under constant and diurnally varying temperature regimes [J].
Bai, Zhen ;
Xie, Hongtu ;
Kao-Kniffin, Jenny ;
Chen, Baodong ;
Shao, Pengshuai ;
Liang, Chao .
FEMS MICROBIOLOGY ECOLOGY, 2017, 93 (05)
[8]   Temperature adaptation of bacterial growth and 14C-glucose mineralisation in a laboratory study [J].
Birgander, Johanna ;
Reischke, Stephanie ;
Jones, Davey L. ;
Rousk, Johannes .
SOIL BIOLOGY & BIOCHEMISTRY, 2013, 65 :294-303
[9]   Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation [J].
Bradford, Mark A. ;
McCulley, Rebecca L. ;
Crowther, Thomas W. ;
Oldfield, Emily E. ;
Wood, Stephen A. ;
Fierer, Noah .
NATURE ECOLOGY & EVOLUTION, 2019, 3 (02) :223-+
[10]  
Bradford MA, 2016, NAT CLIM CHANGE, V6, P751, DOI [10.1038/NCLIMATE3071, 10.1038/nclimate3071]