On the resurgence and asymptotic resurgence of homogeneous ideals

被引:2
作者
Jayanthan, A., V [1 ]
Kumar, Arvind [2 ]
Mukundan, Vivek [3 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
[2] Chennai Math Inst, Dept Math, Chennai 603103, Siruseri Kelamb, India
[3] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
Resurgence; Asymptotic resurgence; Edge ideals; Cover ideals; Symbolic power; Chromatic number; SYMBOLIC POWERS; MONOMIAL IDEALS; REES-ALGEBRAS; EDGE IDEALS; COUNTEREXAMPLES; CONFIGURATIONS; POINTS; BOUNDS; RINGS;
D O I
10.1007/s00209-022-03138-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a field and R = K[x(1), . . . ,x(n)]. We obtain an improved upper bound for asymptotic resurgence of squarefree monomial ideals in R. We study the effect on the resurgence when sum, product and intersection of ideals are taken. We obtain sharp upper and lower bounds for the resurgence and asymptotic resurgence of cover ideals of finite simple graphs in terms of associated combinatorial invariants. We also explicitly compute the resurgence and asymptotic resurgence of cover ideals of several classes of graphs. We characterize a graph being bipartite in terms of the resurgence and asymptotic resurgence of edge and cover ideals. We also compute explicitly the resurgence and asymptotic resurgence of edge ideals of some classes of graphs.
引用
收藏
页码:2407 / 2434
页数:28
相关论文
共 40 条
[1]  
Bauer T, 2009, CONTEMP MATH, V496, P33
[2]   Resurgence numbers of fiber products of projective schemes [J].
Bisui, Sankhaneel ;
Huy Tai Ha ;
Jayanthan, A., V ;
Thomas, Abu Chackalamannil .
COLLECTANEA MATHEMATICA, 2021, 72 (03) :605-614
[3]   The Waldschmidt constant for squarefree monomial ideals [J].
Bocci, Cristiano ;
Cooper, Susan ;
Guardo, Elena ;
Harbourne, Brian ;
Janssen, Mike ;
Nagel, Uwe ;
Seceleanu, Alexandra ;
Van Tuyl, Adam ;
Vu, Thanh .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (04) :875-904
[4]   COMPARING POWERS AND SYMBOLIC POWERS OF IDEALS [J].
Bocci, Cristiano ;
Harbourne, Brian .
JOURNAL OF ALGEBRAIC GEOMETRY, 2010, 19 (03) :399-417
[5]   THE RESURGENCE OF IDEALS OF POINTS AND THE CONTAINMENT PROBLEM [J].
Bocci, Cristiano ;
Harbourne, Brian .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (04) :1175-1190
[6]   SYMBOLIC POWERS OF MONOMIAL IDEALS [J].
Cooper, Susan M. ;
Embree, Robert J. D. ;
Ha, Huy Tai ;
Hoefel, Andrew H. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2017, 60 (01) :39-55
[7]   On resurgence via asymptotic resurgence [J].
DiPasquale, Michael ;
Drabkin, Ben .
JOURNAL OF ALGEBRA, 2021, 587 :64-84
[8]   ASYMPTOTIC RESURGENCE VIA INTEGRAL CLOSURES [J].
Dipasquale, Michael ;
Francisco, Christopher A. ;
Mermin, Jeffrey ;
Schweig, Jay .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (09) :6655-6676
[9]   Asymptotic invariants of ideals with Noetherian symbolic Rees algebra and applications to cover ideals [J].
Drabkin, Benjamin ;
Guerrieri, Lorenzo .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (01) :300-319
[10]   Resurgences for ideals of special point configurations in PN coming from hyperplane arrangements [J].
Dumnicki, M. ;
Harbourne, B. ;
Nagel, U. ;
Seceleanu, A. ;
Szemberg, T. ;
Tutaj-Gasinska, H. .
JOURNAL OF ALGEBRA, 2015, 443 :383-394