EMBEDDING THEOREMS IN THE FRACTIONAL ORLICZ-SOBOLEV SPACE AND APPLICATIONS TO NON-LOCAL PROBLEMS

被引:32
作者
Bahrouni, Sabri [1 ]
Ounaies, Hichem [1 ]
机构
[1] Univ Monastir, Fac Sci, Math Dept, Monastir 5019, Tunisia
关键词
Fractional Orlicz-Sobolev space; compact embedding theorem; fractional M-Laplacian; fountain Theorem; Schrodinger equation; DIFFERENTIAL-OPERATORS; SCHRODINGER-EQUATIONS; ELLIPTIC PROBLEMS; NEUMANN PROBLEMS; MULTIPLICITY; EXISTENCE;
D O I
10.3934/dcds.2020155
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we deal with a new continuous and compact embedding theorems for the fractional Orlicz-Sobolev spaces, also, we study the existence of infinitely many nontrivial solutions for a class of non-local fractional Orlicz-Sobolev Schrodinger equations whose simplest prototype is (-Delta)(m)(s) u+ V(x)m(u) = f (x, u), x is an element of R-d, where 0 < s < 1, d >= 2 and (-Delta)(m)(s) is the fractional M-Laplace operator. The proof is based on the variant Fountain theorem established by Zou.
引用
收藏
页码:2917 / 2944
页数:28
相关论文
共 42 条
[1]  
Adams R.A, 1975, PURE APPL MATH, V65
[2]  
Alves CO, 2014, TOPOL METHOD NONL AN, V44, P435
[3]  
Ambrosio V., 2016, ELECT J DIFFERENTIAL, V2016
[4]  
[Anonymous], 2004, Mediterr. J. Math.
[5]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[6]  
Azroul E., ARXIV180711753
[7]   On a class of nonvariational problems in fractional Orlicz-Sobolev spaces [J].
Bahrouni, Anouar ;
Bahrouni, Sabri ;
Xiang, Mingqi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190
[8]   TRUDINGER-MOSER TYPE INEQUALITY AND EXISTENCE OF SOLUTION FOR PERTURBED NON-LOCAL ELLIPTIC OPERATORS WITH EXPONENTIAL NONLINEARITY [J].
Bahrouni, Anouar .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (01) :243-252
[9]   Infinitely many solutions for a class of sublinear Schrodinger equations with indefinite potentials [J].
Bahrouni, Anouar ;
Ounaies, Hichem ;
Radulescu, Vicentiu D. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (03) :445-465
[10]  
Bahrouni S., TOPOL METHODS NONLIN