Uniform Deposition and Effective Confinement of Lithium in Three-Dimensional Interconnected Microchannels for Stable Lithium Metal Anodes

被引:15
作者
Zhang, Jingjing [1 ]
Su, Zhengkang [1 ]
Jin, Junhong [1 ]
Yang, Shenglin [1 ]
Yu, Aishui [2 ]
Li, Guang [1 ]
机构
[1] Donghua Univ, State Key Lab Modificat Chem Fibers & Polymer Mat, Coll Mat Sci & Engn, Shanghai 201620, Peoples R China
[2] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat, Lab Adv Mat,Inst New Energy, Dept Chem,Shanghai Key Lab Mol Catalysis & Innova, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium metal anode; uniform lithium deposition; lithium ion transport; nano-confinement; lithium metal battery; DENDRITE FORMATION; LIQUID; PERFORMANCE; STRATEGY;
D O I
10.1021/acsami.1c09319
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium dendrite formation has hindered the practical implementation of lithium metal batteries with higher energy densities compared with those of conventional lithium-ion batteries. Herein, a nanoconfinement strategy to access dendritefree lithium metal anodes comprising three-dimensional (3D) hollow porous multi-nanochannel carbon fiber embedded with TiO2 nanocrystals (HTCNF) is reported. The transport of the lithium ions is facilitated by the 3D architecture. Functioning as nanoseeds, the TiO2 nanocrystals guide the lithium ions toward forming uniform deposits, which are further confined inside the hollow carbon fibers and the 3D HTCNF layer. Site-selective deposition coupled with the nanoconfinement of lithium metal modifies the Li plating/stripping behavior and effectively suppresses the dendrite growth. The HTCNF-Li cell delivers a stable cycling performance of 1300 h with a voltage hysteresis as low as 6 mV. The assembled HTCNF-Li//LiFePO4 full cell displays a compelling rate performance and enhanced cycling stability with high capacity retention (90% after 400 cycles at 0.5 C). Our results demonstrate a new and potentially scalable route to resolve the lithium dendrite growth issue for enhanced electrochemical performances, which can be further extended to other metal battery systems.
引用
收藏
页码:39311 / 39321
页数:11
相关论文
共 47 条
[1]   Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode [J].
Bieker, Georg ;
Winter, Martin ;
Bieker, Peter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) :8670-8679
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Lotus-Root-Like Carbon Fibers Embedded with Ni-Co Nanoparticles for Dendrite-Free Lithium Metal Anodes [J].
Chen, Chen ;
Guan, Jun ;
Li, Nian Wu ;
Lu, Yue ;
Luan, Deyan ;
Zhang, Cai Hong ;
Cheng, Guang ;
Yu, Le ;
Lou, Xiong Wen .
ADVANCED MATERIALS, 2021, 33 (24)
[4]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[5]   Surface-modified electrospun polyacrylonitrile nano-membrane for a lithium-ion battery separator based on phase separation mechanism [J].
Dong, Ting ;
Ul Arifeen, Waqas ;
Choi, Jungwook ;
Yoo, Kisoo ;
Ko, Taejo .
CHEMICAL ENGINEERING JOURNAL, 2020, 398
[6]   Coaxially electrospun PAN/HCNFs@PVDF/UiO-66 composite separator with high strength and thermal stability for lithium-ion battery [J].
Fu, Qingshan ;
Zhang, Wei ;
Muhammad, Ismail Pir ;
Chen, Xuedan ;
Zeng, Yue ;
Wang, Botao ;
Zhang, Shangyun .
MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 311
[7]   Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries [J].
Gao, Yue ;
Zhao, Yuming ;
Li, Yuguang C. ;
Huang, Qingquan ;
Mallouk, Thomas E. ;
Wang, Donghai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (43) :15288-15291
[8]   Energy storage materials: A perspective [J].
Goodenough, John B. .
ENERGY STORAGE MATERIALS, 2015, 1 :158-161
[9]   Artificial Interphase Layers for Lithium Metal Anode [J].
Guan, Jun ;
Li, Nianwu ;
Yu, Le .
ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (02) :1-14
[10]   Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials [J].
Holder, Cameron F. ;
Schaak, Raymond E. .
ACS NANO, 2019, 13 (07) :7359-7365