OPTIMAL NORM ESTIMATE OF OPERATORS RELATED TO THE HARMONIC BERGMAN PROJECTION ON THE BALL

被引:19
作者
Choe, Boo Rim [1 ]
Koo, Hyungwoon [1 ]
Nam, Kyesook [2 ]
机构
[1] Korea Univ, Dept Math, Seoul 136713, South Korea
[2] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
关键词
Weighted harmonic Bergman kernel; Harmonic Bergman projection; SPACES; UNIT;
D O I
10.2748/tmj/1287148616
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first obtain an optimal norm estimate for one-parameter family of operators associated with the weighted harmonic Bergman projections on the ball. We then use this result and derive an optimal norm estimate for the weighted harmonic Bergman projections.
引用
收藏
页码:357 / 374
页数:18
相关论文
共 9 条
[1]  
[Anonymous], 2007, OPERATOR THEORY FUNC
[2]  
Axler S., 1992, Harmonic function theory
[3]   Positive Schatten class Toeplitz operators on the ball [J].
Choe, Boo Rim ;
Koo, Hyungwoon ;
Lee, Young Joo .
STUDIA MATHEMATICA, 2008, 189 (01) :65-90
[4]   Derivatives of harmonic Bergman and Bloch functions on the ball [J].
Choe, BR ;
Koo, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) :100-123
[5]   Harmonic Bergman functions on the unit ball in Rn [J].
Jevtic, M ;
Pavlovic, M .
ACTA MATHEMATICA HUNGARICA, 1999, 85 (1-2) :81-96
[6]   Norm estimation of the harmonic Bergman projection on half-spaces [J].
Koo, Hyungwoon ;
Nam, Kyesook ;
Yi, HeungSu .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2009, 61 (01) :225-235
[7]   Boundary regularity in the Dirichlet problem for the invariant Laplacians Δγ on the unit real ball [J].
Liu, CW ;
Peng, LZ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (11) :3259-3268
[8]   Reproducing kernels for harmonic Bergman spaces of the unit [J].
Miao, J .
MONATSHEFTE FUR MATHEMATIK, 1998, 125 (01) :25-35
[9]  
Zhu KH, 2006, CONTEMP MATH, V404, P199