The Sharkovsky Theorem: A Natural Direct Proof

被引:17
作者
Burns, Keith [1 ]
Hasselblatt, Boris [2 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Tufts Univ, Dept Math, Medford, MA 02155 USA
基金
美国国家科学基金会;
关键词
PERIODIC POINTS; LINE;
D O I
10.4169/amer.math.monthly.118.03.229
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a natural and direct proof of a famous result by Sharkovsky that gives a complete description of possible sets of periods for interval maps. The new ingredient is the use of Stefan sequences.
引用
收藏
页码:229 / 244
页数:16
相关论文
共 19 条
[1]  
Alseda L., 2000, Advanced Series in Nonlinear Dynamics, V5
[2]   A simple special case of Sharkovskii's theorem [J].
Barton, R ;
Burns, K .
AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (10) :932-933
[3]  
Block L., 1980, Lecture Notes in Mathematics, V819, P18, DOI 10.1007/BFb0086977
[5]  
Coppel W.A., 1955, Mathematical Proceedings of the Cambridge Philosophical Society, P41
[6]   A simple proof of Sharkovsky's theorem revisited [J].
Du, Bau-Sen .
AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (02) :152-155
[7]   A simple proof of Sharkovsky's theorem [J].
Du, BS .
AMERICAN MATHEMATICAL MONTHLY, 2004, 111 (07) :595-599
[8]  
DU BS, 2007, COLLECTION SIMPLE PR
[9]   A GRAPH THEORETIC PROOF OF SHARKOVSKY THEOREM ON THE PERIODIC POINTS OF CONTINUOUS-FUNCTIONS [J].
HO, CW ;
MORRIS, C .
PACIFIC JOURNAL OF MATHEMATICS, 1981, 96 (02) :361-370
[10]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992