Convergence of the uniaxial PML method for time-domain electromagnetic scattering problems

被引:5
作者
Wei, Changkun [1 ,2 ]
Yang, Jiaqing [3 ]
Zhang, Bo [4 ,5 ,6 ]
机构
[1] Beijing Jiaotong Univ, Sch Sci, Dept Math, Beijing 100044, Peoples R China
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[4] Chinese Acad Sci, NCMIS, LSEC, Beijing 100190, Peoples R China
[5] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[6] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2021年 / 55卷 / 05期
基金
新加坡国家研究基金会;
关键词
Well-posedness; stability; time-domain electromagnetic scattering; uniaxial PML; exponential convergence; PERFECTLY MATCHED LAYER; ACOUSTIC-ELASTIC INTERACTION; MAXWELLS EQUATIONS; HARMONIC MAXWELL; APPROXIMATION;
D O I
10.1051/m2an/2021064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose and study the uniaxial perfectly matched layer (PML) method for three-dimensional time-domain electromagnetic scattering problems, which has a great advantage over the spherical one in dealing with problems involving anisotropic scatterers. The truncated uniaxial PML problem is proved to be well-posed and stable, based on the Laplace transform technique and the energy method. Moreover, the L-2-norm and L-infinity-norm error estimates in time are given between the solutions of the original scattering problem and the truncated PML problem, leading to the exponential convergence of the time-domain uniaxial PML method in terms of the thickness and absorbing parameters of the PML layer. The proof depends on the error analysis between the EtM operators for the original scattering problem and the truncated PML problem, which is different from our previous work (Wei et al. [SIAM J. Numer. Anal. 58 (2020) 1918-1940]).
引用
收藏
页码:2421 / 2443
页数:23
相关论文
共 40 条
[1]   Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations [J].
Bao, G ;
Wu, HJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2121-2143
[2]   Time-Domain Analysis of an Acoustic-Elastic Interaction Problem [J].
Bao, Gang ;
Gao, Yixian ;
Li, Peijun .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (02) :835-884
[3]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[4]   Analysis of a finite element PML approximation for the three dimensional time-harmonic maxwell problem [J].
Bramble, James H. ;
Pasciak, Joseph E. .
MATHEMATICS OF COMPUTATION, 2008, 77 (261) :1-10
[5]   Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems [J].
Bramble, James H. ;
Pasciak, Joseph E. .
MATHEMATICS OF COMPUTATION, 2007, 76 (258) :597-614
[6]   Analysis of a Cartesian PML approximation to acoustic scattering problems in R2 and R3 [J].
Bramble, James H. ;
Pasciak, Joseph E. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 247 :209-230
[7]  
Bramble JH, 2012, INT J NUMER ANAL MOD, V9, P543
[8]   ANALYSIS OF A FINITE PML APPROXIMATION TO THE THREE DIMENSIONAL ELASTIC WAVE SCATTERING PROBLEM [J].
Bramble, James H. ;
Pasciak, Joseph E. ;
Trenev, Dimitar .
MATHEMATICS OF COMPUTATION, 2010, 79 (272) :2079-2101
[9]   On traces for H(curl, Ω) in Lipschitz domains [J].
Buffa, A ;
Costabel, M ;
Sheen, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (02) :845-867
[10]  
Chen JQ, 2008, MATH COMPUT, V77, P673, DOI 10.1090/S0025-5718-07-02055-8