Geometric Clustering: Fixed-Parameter Tractability and Lower Bounds with Respect to the Dimension

被引:0
作者
Cabello, Sergio [1 ]
Giannopoulos, Panos [2 ]
Knauer, Christian [3 ]
Rote, Guenter [3 ]
机构
[1] Univ Ljubljana, Dept Math, IMFM & FMF, Jadranska 19, SI-1000 Ljubljana, Slovenia
[2] Humboldt Univ, Inst Informat, D-10099 Berlin, Germany
[3] Free Univ Berlin, Inst Informat, D-14195 Berlin, Germany
来源
PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS | 2008年
关键词
Clustering; Fixed-parameter tractability; Complexity; Lower bound; Dimension;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an algorithm for the 3-center problem in (R-d, L-infinity),L- i.e., for finding the smallest side length for 3 cubes that cover a given n-point set in R-d, that runs in O(n log n) time for any fixed dimension d. This shows that the problem is fixed-parameter tractable when parameterized with d. On the other hand, using tools from parameterized complexity theory, we show that this is unlikely to be the case with the k-center problem in (R-d, L-2), for any k >= 2. In particular, we prove that deciding whether a given n-point set in R-d can be covered by the union of 2 balls of given radius is W[1]-hard with respect to d, and thus not fixed-parameter tractable unless FPT=W[1]. Our reduction also shows that even an O(n(o(d)))-time algorithm for the latter does not exist, unless SNP subset of DTIME(2(o(n))).
引用
收藏
页码:836 / +
页数:2
相关论文
共 14 条
[1]   Efficient algorithms for geometric optimization [J].
Agarwal, PK ;
Sharir, M .
ACM COMPUTING SURVEYS, 1998, 30 (04) :412-458
[2]   3-piercing of d-dimensional boxes and homothetic triangles [J].
Assa, E ;
Katz, MJ .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1999, 9 (03) :249-259
[3]   Geometric applications of a randomized optimization technique [J].
Chan, TM .
DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 22 (04) :547-567
[4]   Tight lower bounds for certain parameterized NP-hard problems [J].
Chen, J ;
Chor, B ;
Fellows, M ;
Huang, XZ ;
Juedes, D ;
Kanj, IA ;
Xia, G .
INFORMATION AND COMPUTATION, 2005, 201 (02) :216-231
[5]  
DOWNEY R, 1999, PARAMETERIZED COMPLE
[6]  
Drezner Z., 1995, FACILITY LOCATION
[7]  
Eppstein D, 1997, PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P131
[8]  
Flum J., 2006, Parameterized Complexity Theory
[9]   OPTIMAL PACKING AND COVERING IN THE PLANE ARE NP-COMPLETE [J].
FOWLER, RJ ;
PATERSON, MS ;
TANIMOTO, SL .
INFORMATION PROCESSING LETTERS, 1981, 12 (03) :133-137
[10]   GENERALIZED SELECTION AND RANKING - SORTED MATRICES [J].
FREDERICKSON, GN ;
JOHNSON, DB .
SIAM JOURNAL ON COMPUTING, 1984, 13 (01) :14-30