Permeability through a perforated domain for the incompressible 2D Euler equations

被引:10
作者
Bonnaillie-Noel, V. [1 ]
Lacave, C. [2 ]
Masmoudi, N. [3 ]
机构
[1] Univ Rennes 1, ENS Rennes, CNRS, UEB,IRMAR UMR6625, F-35170 Rennes, France
[2] Univ Paris 07, Inst Math Jussieu Paris Rive Gauche, UMR CNRS 7586, Batiment Sophie Germain,Case 7012, F-75205 Paris 13, France
[3] Courant Inst, New York, NY 10012 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2015年 / 32卷 / 01期
基金
美国国家科学基金会;
关键词
NAVIER-STOKES EQUATIONS; IDEAL FLOW; HOMOGENIZATION;
D O I
10.1016/j.anihpc.2013.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the influence of a perforated domain on the 2D Euler equations. Small inclusions of size epsilon are uniformly distributed on the unit segment or a rectangle, and the fluid fills the exterior. These inclusions are at least separated by a distance epsilon(alpha) and we prove that for alpha small enough (namely, less than 2 in the case of the segment, and less than 1 in the case of the square), the limit behavior of the ideal fluid does not feel the effect of the perforated domain at leading order when epsilon -> 0. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:159 / 182
页数:24
相关论文
共 33 条
[21]  
Kikuchi Keisuke, 1983, J FAC SCI U TOKYO IA, V30, P63
[22]  
Lacave C., 2013, NUSSENZVEIG LOPES AS
[23]   Two dimensional incompressible ideal flow around a thin obstacle tending to a curve [J].
Lacave, Christophe .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04) :1121-1148
[24]   Homogenization of the Euler system in a 2D porous medium [J].
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (01) :1-20
[25]   Vortex dynamics in a two-dimensional domain with holes and the small obstacle limit [J].
Lopes, M. C. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (02) :422-436
[26]  
Majda A.J., 2002, CAMB TEXTS APPL MATH, V27
[27]   Homogenization of the compressible Navier-Stokes equations in a porous medium [J].
Masmoudi, N .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :885-906
[28]  
MCGRATH FJ, 1968, ARCH RATION MECH AN, V27, P329
[29]   Homogenization of the inviscid incompressible fluid flow through a 2D porous medium [J].
Mikelic, A ;
Paoli, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (07) :2019-2028
[30]   HOMOGENIZATION OF NONSTATIONARY NAVIER-STOKES EQUATIONS IN A DOMAIN WITH A GRAINED BOUNDARY [J].
MIKELIC, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 158 :167-179