Permeability through a perforated domain for the incompressible 2D Euler equations

被引:10
作者
Bonnaillie-Noel, V. [1 ]
Lacave, C. [2 ]
Masmoudi, N. [3 ]
机构
[1] Univ Rennes 1, ENS Rennes, CNRS, UEB,IRMAR UMR6625, F-35170 Rennes, France
[2] Univ Paris 07, Inst Math Jussieu Paris Rive Gauche, UMR CNRS 7586, Batiment Sophie Germain,Case 7012, F-75205 Paris 13, France
[3] Courant Inst, New York, NY 10012 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2015年 / 32卷 / 01期
基金
美国国家科学基金会;
关键词
NAVIER-STOKES EQUATIONS; IDEAL FLOW; HOMOGENIZATION;
D O I
10.1016/j.anihpc.2013.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the influence of a perforated domain on the 2D Euler equations. Small inclusions of size epsilon are uniformly distributed on the unit segment or a rectangle, and the fluid fills the exterior. These inclusions are at least separated by a distance epsilon(alpha) and we prove that for alpha small enough (namely, less than 2 in the case of the segment, and less than 1 in the case of the square), the limit behavior of the ideal fluid does not feel the effect of the perforated domain at leading order when epsilon -> 0. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:159 / 182
页数:24
相关论文
共 33 条
[11]  
Cioranescu D., 1982, RES NOTES MATH, V60, P98
[12]  
Cioranescu D., 1982, NONLINEAR PARTIAL DI, V60, P98
[13]  
Conca C., 1989, Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, V5, P435
[14]  
Diaz J. I., 1999, EXTRACTA MATH, V14, P141
[15]   ASYMPTOTIC ANALYSIS OF ACOUSTIC WAVES IN A POROUS MEDIUM: INITIAL LAYERS IN TIME [J].
Diaz-Alban, Jose ;
Masmoudi, Nader .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (01) :239-265
[16]   The Two-Dimensional Euler Equations on Singular Domains [J].
Gerard-Varet, David ;
Lacave, Christophe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 209 (01) :131-170
[17]  
GEYMONAT G, 1981, CR ACAD SCI I-MATH, V293, P179
[18]  
Gustafsson B., 2006, Advances in Mathematical Fluid Mechanics
[19]  
Hakobyan H, 2008, ANN ACAD SCI FENN-M, V33, P205
[20]   Two dimensional incompressible ideal flow around a small obstacle [J].
Iftimie, D ;
Lopes, MC ;
Lopes, HJN .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (1-2) :349-379