Absolutely continuous invariant measures for piecewise expanding C-2 transformations in R(n) on domains with cusps on the boundaries

被引:17
作者
AdlZarabi, K [1 ]
机构
[1] CONCORDIA UNIV,DEPT MATH & STAT,MONTREAL,PQ H4B 1R6,CANADA
关键词
D O I
10.1017/S0143385700008683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a bounded region in R(n) and let P = {Pi}(m)(i=1) be a partition of Omega into a finite number of subsets having piecewise C-2 boundaries. The boundaries may contain cusps. Let tau : Omega --> Omega be piecewise C-2 on P and expanding in the sense that there exists alpha > 1 such that for any i = 1, 2,..., m, parallel to D tau(i)(-1)parallel to < alpha(-1), where D tau(i)(-1) is the derivative matrix of tau(i)(-1) and parallel to .parallel to is the euclidean matrix norm. The main result provides a lower bound on alpha which guarantees the existence of an absolutely continuous invariant measure for tau.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 17 条
[1]  
ADLZARABI K, THESIS CONORDIA U MO
[2]  
Candeloro D, 1987, ATTI SEMIN MAT FIS, V35, P33
[3]  
Giusti E., 1984, MINIMAL SURFACES FUN
[4]   ABSOLUTELY CONTINUOUS INVARIANT-MEASURES FOR PIECEWISE EXPANDING C-2 TRANSFORMATIONS IN RN [J].
GORA, P ;
BOYARSKY, A .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 67 (03) :272-286
[5]  
IONESCUTULCEA C, 1950, ANN MATH, V52, P140
[6]  
IVANOV VV, 27 I MATH PREPR
[7]  
Jablo~nski M., 1983, Ann. Polon. Math, V2, P185
[8]  
KELLER G, 1979, CR ACAD SCI A MATH, V289, P625
[9]  
Keller G., 1979, THESIS U RENNES
[10]  
Kosyakin A. A., 1972, ISVESTIYA VUSOV MATH, V3, P32