Gate-controlled reversible rectifying behavior investigated in a two-dimensional MoS2 diode

被引:148
作者
Liu, Qian [1 ]
Li, Jia-Jin [1 ]
Wu, Dan [1 ]
Deng, Xiao-Qing [1 ]
Zhang, Zhen-Hua [1 ]
Fan, Zhi-Qiang [1 ]
Chen, Ke-Qiu [2 ]
机构
[1] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Hunan Prov Key Lab Flexible Elect Mat Genorne Eng, Changsha 410114, Peoples R China
[2] Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
FIELD-EFFECT TRANSISTOR; TRANSPORT-PROPERTIES; PHASE-TRANSITION; SPIN CURRENT; GRAPHENE; ELECTRONICS; JUNCTION; CHANNEL; DEVICE; WSE2;
D O I
10.1103/PhysRevB.104.045412
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By using density functional theory and ab initio quantum-transport simulation, we study the Schottky barrier and the rectifying behavior of diodes consisting of the two-dimensional metal phase 1T-MoS2 and semiconductor phase 2H-MoS2. The results show that the Schottky barrier of the out-of-plane (OP) contacted MoS2 heterostructure diode is a little different from that of the in-plane (IP) contacted MoS2 heterostructure diode. The current-voltage characteristics show that the OP diode has the better rectifying behavior compared to the IP diode under the zero gate voltage. The corresponding maximum rectifier ratio of the OP Schottky barrier diode is close to 10(7) at 0.9 V bias voltage. More interestingly, we find that the gate voltage can be used to effectively control the rectifying behavior of the two diodes. The positive gate voltages can increase the current value of two Schottky barrier diodes, but weaken their rectification ratios. The negative gate voltages can reverse the rectifying direction of two Schottky barrier diodes. The above results provide good theoretical guidance for the designing of diode devices based on two-dimensional materials in the future.
引用
收藏
页数:8
相关论文
共 60 条
[1]   2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition [J].
Ambrosi, Adriano ;
Sofer, Zdenek ;
Pumera, Martin .
CHEMICAL COMMUNICATIONS, 2015, 51 (40) :8450-8453
[2]   Multifunctional Lateral Transition-Metal Disulfides Heterojunctions [J].
An, Yipeng ;
Hou, Yusheng ;
Wang, Kun ;
Gong, Shijing ;
Ma, Chunlan ;
Zhao, Chuanxi ;
Wang, Tianxing ;
Jiao, Zhaoyong ;
Wang, Heyan ;
Wu, Ruqian .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (32)
[3]   Unveiling the Electric-Current-Limiting and Photodetection Effect in Two-Dimensional Hydrogenated Borophene [J].
An, Yipeng ;
Hou, Yusheng ;
Wang, Hui ;
Li, Jie ;
Wu, Ruqian ;
Wang, Tianxing ;
Da, Haixia ;
Jiao, Jutao .
PHYSICAL REVIEW APPLIED, 2019, 11 (06)
[4]   GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R ;
PINHAS, S .
PHYSICAL REVIEW B, 1985, 31 (10) :6207-6215
[5]   Thermal transport of carbon nanomaterials [J].
Chen, Xue-Kun ;
Chen, Ke-Qiu .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (15)
[6]   Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides [J].
Chia, Xinyi ;
Eng, Alex Yong Sheng ;
Ambrosi, Adriano ;
Tan, Shu Min ;
Pumera, Martin .
CHEMICAL REVIEWS, 2015, 115 (21) :11941-11966
[7]   Versatile Crystal Structures and (Opto)electronic Applications of the 2D Metal Mono-, Di-, and Tri-Chalcogenide Nanosheets [J].
Cui, Yu ;
Zhou, Ziqi ;
Li, Tao ;
Wang, Kaiyou ;
Li, Jingbo ;
Wei, Zhongming .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (24)
[8]   Chemical vapor deposition growth of two-dimensional heterojunctions [J].
Cui, Yu ;
Li, Bo ;
Li, JingBo ;
Wei, ZhongMing .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (01)
[9]   Improving Performances of In-Plane Transition-Metal Dichalcogenide Schottky Barrier Field-Effect Transistors [J].
Fan, Zhi-Qang ;
Jiang, Xiang-Wei ;
Chen, Jiezhi ;
Luo, Jun-Wei .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (22) :19271-19277
[10]   High-performance 5.1 nm in-plane Janus WSeTe Schottky barrier field effect transistors [J].
Fan, Zhi-Qiang ;
Zhang, Zhen-Hua ;
Yang, Shen-Yuan .
NANOSCALE, 2020, 12 (42) :21750-21756