Dimensional lower bounds for contact surfaces of Cheeger sets

被引:3
作者
Caroccia, M. [1 ]
Ciani, S. [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Univ Firenze, DiMaI U Dini, Vle GB Morgagni 67-A, I-50134 Florence, Italy
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2022年 / 157卷
关键词
Cheeger sets; Cheeger constant; Constant mean curvature; Removable singularities; PDEs; REMOVABLE SINGULARITIES; DIVERGENCE; THEOREM; BOUNDARIES; REGULARITY; UNIQUENESS; CONSTANT;
D O I
10.1016/j.matpur.2021.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We carry out an analysis of the size of the contact surface between a Cheeger set E and its ambient space Omega subset of R-d. By providing bounds on the Hausdorff dimension of the contact surface partial derivative E boolean AND partial derivative Omega, we show a fruitful interplay between this size itself and the regularity of the boundaries. Eventually, we obtain sufficient conditions to infer that the contact surface has positive (d -1) dimensional Hausdorff measure. Finally we prove by explicit examples in two dimensions that such bounds are optimal. (C) 2021 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1 / 44
页数:44
相关论文
共 49 条
  • [1] Alexandrov A. D., 1962, ANN MAT PUR APPL, V58, P303, DOI [10.1007/BF02413056, 10.1007/BF02413056.2, DOI 10.1007/BF02413056.2, DOI 10.1007/BF02413056]
  • [2] Ambrosio L, 2018, APPUNTI SC NORM SUPE, V18, P1, DOI 10.1007/978-88-7642-651-3
  • [3] Ambrosio L., 2000, OXFORD MATH MONOGRAP
  • [4] [Anonymous], 1965, 2 ARCH RATIONAL MECH
  • [5] [Anonymous], 1954, Ann. Mat. Pura Appl., DOI [10.1007/BF02412838, DOI 10.1007/BF02412838]
  • [6] ON THE HONEYCOMB CONJECTURE FOR A CLASS OF MINIMAL CONVEX PARTITIONS
    Bucur, Dorin
    Fragala, Ilaria
    Velichkov, Bozhidar
    Verzini, Gianmaria
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (10) : 7149 - 7179
  • [7] Bucur D, 2016, J GEOM ANAL, V26, P88, DOI 10.1007/s12220-014-9539-5
  • [8] Buttazzo G, 2007, DIFFER INTEGRAL EQU, V20, P991
  • [9] Campanato S., 1963, ANN SCUOLA NORM-SCI, V17, P175
  • [10] Canete A, 2021, PREPRINT