Reversing fatigue in carbon-fiber reinforced vitrimer composites

被引:51
作者
Kamble, Mithil [1 ]
Vashisth, Aniruddh [2 ]
Yang, Hongkun [3 ]
Pranompont, Sikharin [1 ]
Picu, Catalin R. [1 ]
Wang, Dong [3 ]
Koratkar, Nikhil [1 ,4 ]
机构
[1] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
[2] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[3] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[4] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
Vitrimers; Fatigue; Healing; Carbon-fiber composites; MECHANICAL-PROPERTIES; MOLECULAR-DYNAMICS; CROSS-LINKING; EPOXY; NETWORKS; PREDICTION;
D O I
10.1016/j.carbon.2021.10.078
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite decades of research, fatigue remains the primary culprit for catastrophic failure in carbon-fiber reinforced polymeric (CFRP) composites. Existing approaches to combat fatigue are usually based on nano-scale additives that slow the growth of cracks in the polymer. While this prolongs fatigue-life, it cannot avert eventual failure since crack growth is being slowed and not reversed. Other approaches have explored self-healing polymers that release a curing agent to repair local damage. However, this approach also fails to tackle fatigue, since once the curing agent is released, it gets consumed and cannot be re-used. To addresses the irreversibility of fatigue, we report here a vitrimeric system, for which reversal of fatigue damage can be achieved repeatedly, by heating the material to above its topology freezing transition temperature. This enables intermittent healing of fatigue-induced damage, as it accumulates in the vitrimer matrix. Using this approach, we show that fatigue failure in vitrimers and in carbon-fiber reinforced vitrimers (vCFRP) can be postponed indefinitely. Such vCFRPs could open the door to future materials, in which natural aging and fatigue processes can be periodically reversed, so as to guarantee safe and reliable long-term operation.
引用
收藏
页码:108 / 114
页数:7
相关论文
共 30 条
[1]   The fatigue of carbon fibre reinforced plastics - A review [J].
Alam, Parvez ;
Mamalis, Dimitrios ;
Robert, Colin ;
Floreani, Christophe ;
Bradaigh, Conchur M. O. .
COMPOSITES PART B-ENGINEERING, 2019, 166 :555-579
[2]   Understanding, predicting, and tuning the fragility of vitrimeric polymers [J].
Ciarella, Simone ;
Biezemans, Rutger A. ;
Janssen, Liesbeth M. C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (50) :25013-25022
[3]   Chemical control of the viscoelastic properties of vinylogous urethane vitrimers [J].
Denissen, Wim ;
Droesbeke, Martijn ;
Nicolay, Renaud ;
Leibler, Ludwik ;
Winne, Johan M. ;
Du Prez, Filip E. .
NATURE COMMUNICATIONS, 2017, 8
[4]   The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles [J].
Hsieh, T. H. ;
Kinloch, A. J. ;
Masania, K. ;
Taylor, A. C. ;
Sprenger, S. .
POLYMER, 2010, 51 (26) :6284-6294
[5]   Porous Graphene Films with Unprecedented Elastomeric Scaffold-Like Folding Behavior for Foldable Energy Storage Devices [J].
Huang, Ruling ;
Huang, Meiling ;
Li, Xiaofeng ;
An, Fei ;
Koratkar, Nikhil ;
Yu, Zhong-Zhen .
ADVANCED MATERIALS, 2018, 30 (21)
[6]   Vitrimer Transition Temperature Identification: Coupling Various Thermomechanical Methodologies [J].
Hubbard, Amber M. ;
Ren, Yixin ;
Konkolewicz, Dominik ;
Sarvestani, Alireza ;
Picu, Catalin R. ;
Kedziora, Gary S. ;
Roy, Ajit ;
Varshney, Vikas ;
Nepal, Dhriti .
ACS APPLIED POLYMER MATERIALS, 2021, 3 (04) :1756-1766
[7]  
Jain AK, 2000, J APPL POLYM SCI, V78, P2089
[8]   Molecular Simulation of Cross-Linked Epoxy and Epoxy-POSS Nanocomposite [J].
Lin, Po-Han ;
Khare, Rajesh .
MACROMOLECULES, 2009, 42 (12) :4319-4327
[9]   Accelerated molecular dynamics with the bond-boost method [J].
Miron, RA ;
Fichthorn, KA .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (12) :6210-6216
[10]  
Mithil Kamble, 2020, CARBON, V17, P220