Caesium Acetate-Based Electrolytes for Aqueous Electrical Double Layer Capacitors

被引:2
|
作者
Liu, Siqi [1 ,2 ]
Stettner, Timo [1 ,2 ]
Klukas, Ronald [3 ]
Porada, Thomas [3 ]
Furda, Kristina [3 ]
Fernandez, Alba Martin [3 ]
Balducci, Andrea [1 ,2 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Tech Chem & Environm Chem, Philosophenweg 7a, D-07743 Jena, Germany
[2] Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem Jena CEEC Jena, Philosophenweg 7a, D-07743 Jena, Germany
[3] Aqua Concept GmbH, Kirchenholzl 13, D-82166 Grafelfing, Germany
关键词
Aqueous electrolyte; Caesium acetate; EDLCs; High voltage; Water in salt electrolyte; IN-SALT ELECTROLYTE; HIGH-PERFORMANCE; ELECTROCHEMICAL CAPACITORS; CARBON MATERIALS; WATER; ENERGY; IONS; SUPERCAPACITOR; CHALLENGES; BATTERIES;
D O I
10.1002/celc.202200711
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, we report about the use of caesium acetate (CsOAc)-based electrolytes for Electrical Double Layer Capacitors (EDLCs). We showed that solutions of 6.4 m CsOAc in H2O, which is a highly concentrated aqueous electrolyte, and 21 m CsOAc in H2O, which is a Water in Salt Electrolyte (WiSE), display very favourable chemical-physical properties. EDLCs containing 21 m CsOAc in H2O as electrolyte display operating voltage of 1.7 V. These devices display good energy density and are able to retain all their initial capacitance after 400 hours of floating at 1.7 V. On the other hand, EDLCs containing 6.4 m CsOAc in H2O as electrolyte display operative voltage of 1.6 V and are delivering at 10 A g(-1) very high energy and power density (4 Wh kg(-1) and 14.1 kW kg(-1), respectively). Furthermore, they can retain 91 % of their initial capacitance after 400 hours of floating at 1.6 V. This performance, which is among the highest so far reported for aqueous-based EDLCs, indicates that CsOAc can be considered a very promising salt for the realization of advanced EDLCs.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Protic and Aprotic Acetate-Based Ionic Liquids as Electrolytes for Electrical Double Layer Capacitors
    Zheng, Zhong
    Liu, Siqi
    Balducci, Andrea
    CHEMELECTROCHEM, 2025, 12 (07):
  • [2] Electrical Properties of Cellulose Acetate-Based Polymer Gel Electrolytes
    Abidin, S. Z. Z.
    Ali, A. M.
    Jaafar, N. K.
    Yahya, M. Z. A.
    3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017), 2017, 1885
  • [3] Solvent-Free Electrolytes for Electrical Double Layer Capacitors
    Negre, L.
    Daffos, B.
    Taberna, P. L.
    Simon, P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) : A5037 - A5040
  • [4] Organic carbonate-organic ester-based non-aqueous electrolytes for electrical double layer capacitors
    Jänes, A
    Lust, E
    ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (05) : 510 - 514
  • [5] Specific Performance of Electrical Double-Layer Capacitors Based on Different Separator Materials and Non-Aqueous Electrolytes
    Tonurist, K.
    Thomberg, T.
    Jaenes, A.
    Lust, E.
    ELECTROCHEMICAL CAPACITORS, 2013, 50 (43): : 181 - 189
  • [6] Carbon-based electrochemical capacitors with acetate aqueous electrolytes
    Piwek, Justyna
    Platek, Anetta
    Fic, Krzysztof
    Frackowiak, Elzbieta
    ELECTROCHIMICA ACTA, 2016, 215 : 179 - 186
  • [7] Substituted phosphonium cation based electrolytes for nonaqueous electrical double-layer capacitors
    H. Kurig
    A. Jänes
    E. Lust
    Journal of Materials Research, 2010, 25 : 1447 - 1450
  • [8] Substituted phosphonium cation based electrolytes for nonaqueous electrical double-layer capacitors
    Kurig, H.
    Jaenes, A.
    Lust, E.
    JOURNAL OF MATERIALS RESEARCH, 2010, 25 (08) : 1447 - 1450
  • [9] Potassium Salts Based Non-Aqueous Electrolytes for Electrical Double Layer Capacitors: A Comparison with LiPF6 and NaPF6 Based Electrolytes
    Thomberg, T.
    Vali, R.
    Eskusson, J.
    Romann, T.
    Janes, A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (16) : A3862 - A3870
  • [10] Anti-freezing aqueous electrolytes for electric double-layer capacitors
    Yin, Jiao
    Qi, Li
    Wang, Hongyu
    ELECTROCHIMICA ACTA, 2013, 88 : 208 - 216