Hybrid position/force control of flexible-macro/rigid-micro manipulator systems

被引:69
作者
Yoshikawa, T
Harada, K
Matsumoto, A
机构
[1] Department of Mechanical Engineering, Faculty of Engineering, Kyoto University
来源
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION | 1996年 / 12卷 / 04期
关键词
D O I
10.1109/70.508447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, hybrid position/force control algorithms of combined fiexible-macro/rigid-micro manipulator systems are proposed. In the proposed system, the micro manipulator is attached at the tip of the flexible macro manipulator. The macro manipulator can move widely, but cannot realize fast and precise motion because of its flexibility. On the contrary, the micro manipulator cannot move widely, but can move fast and precisely. By taking advantage of the macro/micro system, both the end point position and the force exerted by its end effector can be easily controlled in spite of the flexibility in the macro part. This paper first discusses trajectory planning for the macro/micro system. Second, a quasi-static hybrid control algorithm and a dynamic hybrid control algorithm are developed. In our control algorithms, the macro part is controlled roughly to realize the desired trajectory, and suppress vibration. The micro part is controlled to compensate for the position and force errors due to the elasticity in the macro part. Finally, to verify the effectiveness of the proposed control algorithms, experimental results are shown.
引用
收藏
页码:633 / 640
页数:8
相关论文
共 27 条