The C-terminal acidic motif of Phafin2 inhibits PH domain binding to phosphatidylinositol 3-phosphate

被引:8
作者
Tang, Tuo-Xian [1 ]
Finkielstein, Carla, V [2 ]
Capelluto, Daniel G. S. [1 ]
机构
[1] Virginia Tech, Fralin Life Sci Inst, Dept Biol Sci, Prot Signaling Domains Lab,Ctr Soft Matter & Biol, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Biol Sci, Integrated Cellular Responses Lab, Fralin Life Sci Inst, 1015 Life Sci Circle, Blacksburg, VA 24061 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2020年 / 1862卷 / 06期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Phafin2; FYVE domain; PH domain; Phosphatidylinositol; 3-phosphate; Surface plasmon resonance; Isothermal titration calorimetry; MEMBRANE INSERTION; CIRCULAR-DICHROISM; MECHANISM; SPECIFICITY; AUTOPHAGY; PROTEINS;
D O I
10.1016/j.bbamem.2020.183230
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Changes in membrane curvature are required to control the function of subcellular compartments; malfunctions of such processes are associated with a wide range of human diseases. Membrane remodeling often depends upon the presence of phosphoinositides, which recruit protein effectors for a variety of cellular functions. Phafin2 is a phosphatidylinositol 3-phosphate (PtdIns3P)-binding effector involved in endosomal and lysosomal membrane-associated signaling. Both the Phafin2 PH and the FYVE domains bind PtdIns3P, although their redundant function in the protein is unclear. Through a combination of lipid-binding assays, we found that, unlike the FYVE domain, recognition of the PH domain to PtdIns3P requires a lipid bilayer. Using site-directed mutagenesis and truncation constructs, we discovered that the Phafin2 FYVE domain is constitutive for PtdIns3P binding, whereas PH domain binding to PtdIns3P is autoinhibited by a conserved C-terminal acidic motif. These findings suggest that binding of the Phafin2 PH domain to PtdIns3P in membrane compartments occurs through a highly regulated mechanism. Potential mechanisms are discussed throughout this report.
引用
收藏
页数:10
相关论文
共 31 条
[21]   Conformational Studies of the C-Terminal 16-Amino-Acid-Residue Fragment of the B3 Domain of the Immunoglobulin Binding Protein G from Streptococcus [J].
Skwierawska, Agnieszka ;
Oldziej, Stanislaw ;
Liwo, Adam ;
Scheraga, Harold A. .
BIOPOLYMERS, 2009, 91 (01) :37-51
[22]   Solution Structure of Tandem SH2 Domains from Spt6 Protein and Their Binding to the Phosphorylated RNA Polymerase II C-terminal Domain [J].
Liu, Jianping ;
Zhang, Jiahai ;
Gong, Qingguo ;
Xiong, Peng ;
Huang, Hongda ;
Wu, Bo ;
Lu, Guowei ;
Wu, Jihui ;
Shi, Yunyu .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (33) :29218-29226
[23]   The structure of the C-terminal domain of the largest editosome interaction protein and its role in promoting RNA binding by RNA-editing ligase L2 [J].
Park, Young-Jun ;
Budiarto, Tanya ;
Wu, Meiting ;
Pardon, Els ;
Steyaert, Jan ;
Hol, Wim G. J. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (14) :6966-6977
[24]   The C-terminal D/E-rich domain of MBD3 is a putative Z-DNA mimic that competes for Zα DNA-binding activity [J].
Lee, Chi-Hua ;
Shih, Yan-Ping ;
Ho, Meng-Ru ;
Wang, Andrew H. -J. .
NUCLEIC ACIDS RESEARCH, 2018, 46 (22) :11806-11821
[25]   PDZ domain-dependent regulation of NHE3 protein by both internal Class II and C-terminal Class I PDZ-binding motifs [J].
Cha, Boyoung ;
Yang, Jianbo ;
Singh, Varsha ;
Zachos, Nicholas C. ;
Sarker, Rafiquel I. ;
Chen, Tian-e ;
Chakraborty, Molee ;
Tse, Chung-Ming ;
Donowitz, Mark .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (20) :8279-8290
[26]   Activation of PI3K/Akt signaling by n-terminal SH2 domain mutants of the p85α regulatory subunit of PI3K is enhanced by deletion of its c-terminal SH2 domain [J].
Hofmann, Bianca T. ;
Juecker, Manfred .
CELLULAR SIGNALLING, 2012, 24 (10) :1950-1954
[27]   Identification of a New Interaction Mode between the Src Homology 2 Domain of C-terminal Src Kinase (Csk) and Csk-binding Protein/Phosphoprotein Associated with Glycosphingolipid Microdomains [J].
Tanaka, Hiroaki ;
Akagi, Ken-ichi ;
Oneyama, Chitose ;
Tanaka, Masakazu ;
Sasaki, Yuichi ;
Kanou, Takashi ;
Lee, Young-Ho ;
Yokogawa, Daisuke ;
Dobenecker, Marc-Werner ;
Nakagawa, Atsushi ;
Okada, Masato ;
Ikegami, Takahisa .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (21) :15240-15254
[28]   Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. I. Importance of hydrophobic interactions in stabilization of β-hairpin structure [J].
Skwierawska, Agnieszka ;
Makowska, Joanna ;
Oldziej, Stanislaw ;
Liwo, Adam ;
Scheraga, Harold A. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2009, 75 (04) :931-953
[29]   Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. III. Dynamics of long-range hydrophobic interactions [J].
Lewandowska, Agnieszka ;
Oldziej, Stanislaw ;
Liwo, Adam ;
Scheraga, Harold A. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2010, 78 (03) :723-737
[30]   Mechanism of Formation of the C-Terminal β-Hairpin of the B3 Domain of the Immunoglobulin-Binding Protein G from Streptococcus. IV. Implication for the Mechanism of Folding of the Parent Protein [J].
Lewandowska, Agnieszka ;
Oldziej, Stanislaw ;
Liwo, Adam ;
Scheraga, Harold A. .
BIOPOLYMERS, 2010, 93 (05) :469-480