Lithium coatings on NSTX plasma facing components and its effects on boundary control, core plasma performance, and operation

被引:35
作者
Kugel, H. W. [1 ]
Bell, M. G. [1 ]
Schneider, H. [1 ]
Allain, J. P. [2 ]
Bell, R. E. [1 ]
Kaita, R. [1 ]
Kallman, J. [1 ]
Kaye, S. [1 ]
LeBlanc, B. P. [1 ]
Mansfield, D. [1 ]
Nygren, R. E. [3 ]
Maingi, R. [4 ]
Menard, J. [1 ]
Mueller, D. [1 ]
Ono, M. [1 ]
Paul, S. [1 ]
Gerhardt, S. [1 ]
Raman, R. [5 ]
Sabbagh, S. [6 ]
Skinner, C. H. [1 ]
Soukhanovskii, V. [7 ]
Timberlake, J. [1 ]
Zakharov, L. E. [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA
[3] Sandia Natl Labs, Albuquerque, NM 87185 USA
[4] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[5] Univ Washington, Seattle, WA 98195 USA
[6] Columbia Univ, New York, NY 10027 USA
[7] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
基金
美国能源部;
关键词
Lithium; Lithium wall fusion regime; Recycling; Plasma wall interactions; Divertors; Spherical torus; DIVERTOR;
D O I
10.1016/j.fusengdes.2010.04.004
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
NSTX high power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following the wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a liquid lithium divertor surface on the outer part of the lower divertor. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:865 / 873
页数:9
相关论文
共 22 条
[1]   Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications [J].
Allain, J. P. ;
Rokusek, D. L. ;
Harilal, S. S. ;
Nieto-Perez, M. ;
Skinner, C. H. ;
Kugel, H. W. ;
Heim, B. ;
Kaita, R. ;
Majeski, R. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 :942-946
[2]  
[Anonymous], 2004, FUSION ENG DESIGN, V72, P1
[3]   Deuterium retention in liquid lithium [J].
Baldwin, MJ ;
Doerner, RP ;
Luckhardt, SC ;
Conn, RW .
NUCLEAR FUSION, 2002, 42 (11) :1318-1323
[4]   Plasma response to lithium-coated plasma-facing components in the National Spherical Torus Experiment [J].
Bell, M. G. ;
Kugel, H. W. ;
Kaita, R. ;
Zakharov, L. E. ;
Schneider, H. ;
LeBlanc, B. P. ;
Mansfield, D. ;
Bell, R. E. ;
Maingi, R. ;
Ding, S. ;
Kaye, S. M. ;
Paul, S. F. ;
Gerhardt, S. P. ;
Canik, J. M. ;
Hosea, J. C. ;
Taylor, G. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
[5]   PSI modeling of liquid lithium divertors for the NSTX tokamak [J].
Brooks, JN ;
Allain, JP ;
Rognlien, TD ;
Maingi, R .
JOURNAL OF NUCLEAR MATERIALS, 2005, 337 (1-3) :1053-1057
[6]   On Demand Triggering of Edge Localized Instabilities Using External Nonaxisymmetric Magnetic Perturbations in Toroidal Plasmas [J].
Canik, J. M. ;
Maingi, R. ;
Evans, T. E. ;
Bell, R. E. ;
Gerhardt, S. P. ;
LeBlanc, B. P. ;
Manickam, J. ;
Menard, J. E. ;
Osborne, T. H. ;
Park, J. -K. ;
Paul, S. F. ;
Snyder, P. B. ;
Sabbagh, S. A. ;
Kugel, H. W. ;
Unterberg, E. A. .
PHYSICAL REVIEW LETTERS, 2010, 104 (04)
[7]   Lithium divertor concept and results of supporting experiments [J].
Evtikhin, VA ;
Lyublinski, IE ;
Vertkov, AV ;
Mirnov, SV ;
Lazarev, VB ;
Petrova, NP ;
Sotnikov, SM ;
Chernobai, AP ;
Khripunov, BI ;
Petrov, VB ;
Prokhorov, DY ;
Korzhavin, VM .
PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (06) :955-977
[8]   Low recycling and high power density handling physics in the Current Drive Experiment-Upgrade with lithium plasma-facing components [J].
Kaita, R. ;
Majeski, R. ;
Gray, T. ;
Kugel, H. ;
Mansfield, D. ;
Spaleta, J. ;
Timberlake, J. ;
Zakharov, L. ;
Doerner, R. ;
Lynch, T. ;
Maingi, R. ;
Soukhanovskii, V. .
PHYSICS OF PLASMAS, 2007, 14 (05)
[9]   Effect of lithium PFC coatings on NSTX density control [J].
Kugel, H. W. ;
Bell, M. G. ;
Bell, R. ;
Bush, C. ;
Gates, D. ;
Gray, T. ;
Kaita, R. ;
Leblanc, B. ;
Maingi, R. ;
Majeski, R. ;
Mansfield, D. ;
Mueller, D. ;
Paul, S. ;
Raman, R. ;
Roquemore, A. L. ;
Sabbagh, S. ;
Skinner, C. H. ;
Soukhanovskii, V. ;
Stevenson, T. ;
Zakharov, L. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (791-796) :791-796
[10]   Physics design requirements for the National Spherical Torus Experiment liquid lithium divertor [J].
Kugel, H. W. ;
Bell, M. ;
Berzak, L. ;
Brooks, A. ;
Ellis, R. ;
Gerhardt, S. ;
Harjes, H. ;
Kaita, R. ;
Kallman, J. ;
Maingi, R. ;
Majeski, R. ;
Mansfield, D. ;
Menard, J. ;
Nygren, R. E. ;
Soukhanovskii, V. ;
Stotler, D. ;
Wakeland, P. ;
Zakharov, L. E. .
FUSION ENGINEERING AND DESIGN, 2009, 84 (7-11) :1125-1129