A weighted quantile regression for randomly truncated data

被引:22
作者
Zhou, Weihua [1 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
关键词
Weighted quantile regression; Truncated data; Consistency; Asymptotic normality; ESTIMATOR;
D O I
10.1016/j.csda.2010.05.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Quantile regression offers great flexibility in assessing covariate effects on the response. In this article, based on the weights proposed by He and Yang (2003), we develop a new quantile regression approach for left truncated data. Our method leads to a simple algorithm that can be conveniently implemented with R software. It is shown that the proposed estimator is strongly consistent and asymptotically normal under appropriate conditions. We evaluate the finite sample performance of the proposed estimators through extensive simulation studies. (C) 2010 Published by Elsevier B.V.
引用
收藏
页码:554 / 566
页数:13
相关论文
共 24 条
[1]   NONPARAMETRIC-ESTIMATION OF THE SLOPE OF A TRUNCATED REGRESSION [J].
BHATTACHARYA, PK ;
CHERNOFF, H ;
YANG, SS .
ANNALS OF STATISTICS, 1983, 11 (02) :505-514
[2]   The product-moment correlation coefficient and linear regression for truncated data [J].
Chen, CH ;
Tsai, WY ;
Chao, WH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (435) :1181-1186
[3]  
Efron B., 1993, INTRO BOOTSTRAP, DOI 10.1007/978-1-4899-4541-9
[4]  
He SY, 1998, ANN STAT, V26, P992
[5]   Estimation of regression parameters with left truncated data [J].
He, SY ;
Yang, GL .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 117 (01) :99-122
[6]  
He SY, 1998, ANN STAT, V26, P1011
[7]   RANDOM TRUNCATION MODELS AND MARKOV-PROCESSES [J].
KEIDING, N ;
GILL, RD .
ANNALS OF STATISTICS, 1990, 18 (02) :582-602
[8]   REGRESSION QUANTILES [J].
KOENKER, R ;
BASSETT, G .
ECONOMETRICA, 1978, 46 (01) :33-50
[9]  
Koenker R., 2005, Econometric Society Monographs, DOI [10.1017/CBO9780511754098, DOI 10.1017/CBO9780511754098]
[10]  
Lai T. L., 1992, J MULTIVARIATE ANAL, V40, P13