Triple convolution identities on Bernoulli polynomials and Euler polynomials

被引:0
|
作者
Wang, Weiping [1 ]
Liu, Hongmei [2 ]
Jia, Cangzhi [3 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] Dalian Nationalities Univ, Sch Sci, Dalian 116600, Peoples R China
[3] Dalian Maritime Univ, Dept Math, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
Bernoulli polynomials; Euler polynomials; Combinatorial identities; Sums of products; Triple convolutions; PRODUCTS; SUMS; NUMBERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by means of the generating function method, we establish 38 triple convolution identities on the Bernoulli polynomials and the Euler polynomials (i.e., sums of products of three Bernoulli polynomials or Euler polynomials), which have the form Sigma(i+j+k=ni,j,k >= 0) lambda(i)mu(j) n!/i!j!k! Fi+alpha(x)/(i+1)alpha G(j+beta)(y)/(j+1)beta Hk+gamma(z)/(k+1)gamma, where alpha, beta, gamma is an element of N-0, lambda, mu is an element of C, and F-k(x), G(k)(y), H-k(z) are the Bernoulli polynomials or the Euler polynomials. As supplements, we also give 3 quadruple convolution identities on the Bernoulli and Euler polynomials and 4 triple convolution identities on the Bernoulli and Euler numbers.
引用
收藏
页码:369 / 395
页数:27
相关论文
共 50 条
  • [31] CERTAIN COMBINATORIC CONVOLUTION SUMS AND THEIR RELATIONS TO BERNOULLI AND EULER POLYNOMIALS
    Kim, Daeyeoul
    Bayad, Abdelmejid
    Ikikardes, Nazli Yildiz
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (03) : 537 - 565
  • [32] Convolution Formulae Related to Special Case of Euler and Bernoulli Polynomials
    Aygunes, Aykut Ahmet
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [33] Extended Zeilberger's algorithm for identities on Bernoulli and Euler polynomials
    Chen, William Y. C.
    Sun, Lisa H.
    JOURNAL OF NUMBER THEORY, 2009, 129 (09) : 2111 - 2132
  • [34] Some identities related to degenerate Bernoulli and degenerate Euler polynomials
    Kim, Taekyun
    Kim, Dae San
    Kim, Wonjoo
    Kwon, Jongkyum
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 882 - 897
  • [35] Some Identities on Laguerre Polynomials in Connection with Bernoulli and Euler Numbers
    Kim, Dae San
    Kim, Taekyun
    Dolgy, Dmitry V.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [36] Some Identities on the Second Kind Bernoulli Polynomials of order α and Second Kind Euler Polynomials of order α
    Kurt, Burak
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 352 - 355
  • [37] Identities for Bernoulli polynomials and Bernoulli numbers
    Alzer, Horst
    Kwong, Man Kam
    ARCHIV DER MATHEMATIK, 2014, 102 (06) : 521 - 529
  • [38] Identities for Bernoulli polynomials and Bernoulli numbers
    Horst Alzer
    Man Kam Kwong
    Archiv der Mathematik, 2014, 102 : 521 - 529
  • [39] A CONVOLUTION FORMULA FOR BERNOULLI POLYNOMIALS
    He, Yuan
    Zhang, Wenpeng
    ARS COMBINATORIA, 2013, 108 : 97 - 104
  • [40] CERTAIN COMBINATORIC CONVOLUTION SUMS ARISING FROM BERNOULLI AND EULER POLYNOMIALS
    Kim, Daeyeoul
    Sarp, Umit
    Ikikardes, Sebahattin
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (01) : 311 - 330