Triple convolution identities on Bernoulli polynomials and Euler polynomials

被引:0
作者
Wang, Weiping [1 ]
Liu, Hongmei [2 ]
Jia, Cangzhi [3 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] Dalian Nationalities Univ, Sch Sci, Dalian 116600, Peoples R China
[3] Dalian Maritime Univ, Dept Math, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
Bernoulli polynomials; Euler polynomials; Combinatorial identities; Sums of products; Triple convolutions; PRODUCTS; SUMS; NUMBERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by means of the generating function method, we establish 38 triple convolution identities on the Bernoulli polynomials and the Euler polynomials (i.e., sums of products of three Bernoulli polynomials or Euler polynomials), which have the form Sigma(i+j+k=ni,j,k >= 0) lambda(i)mu(j) n!/i!j!k! Fi+alpha(x)/(i+1)alpha G(j+beta)(y)/(j+1)beta Hk+gamma(z)/(k+1)gamma, where alpha, beta, gamma is an element of N-0, lambda, mu is an element of C, and F-k(x), G(k)(y), H-k(z) are the Bernoulli polynomials or the Euler polynomials. As supplements, we also give 3 quadruple convolution identities on the Bernoulli and Euler polynomials and 4 triple convolution identities on the Bernoulli and Euler numbers.
引用
收藏
页码:369 / 395
页数:27
相关论文
共 50 条
  • [21] Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums
    Liu, Hongmei
    Wang, Weiping
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3346 - 3363
  • [22] A note on the Bernoulli and Euler polynomials
    Cheon, GS
    APPLIED MATHEMATICS LETTERS, 2003, 16 (03) : 365 - 368
  • [23] Some convolution identities for Frobenius-Euler polynomials
    Jing Pan
    Fengzao Yang
    Advances in Difference Equations, 2017
  • [24] Symmetric identities on Bernoulli polynomials
    Fu, Amy M.
    Pan, Hao
    Zhang, Iris F.
    JOURNAL OF NUMBER THEORY, 2009, 129 (11) : 2696 - 2701
  • [25] An algorithm for computing mixed sums of products of Bernoulli polynomials and Euler polynomials
    Feng, Lei
    Wang, Weiping
    JOURNAL OF SYMBOLIC COMPUTATION, 2015, 66 : 84 - 97
  • [26] Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials
    He, Yuan
    Araci, Serkan
    Srivastava, H. M.
    Acikgoz, Mehmet
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 262 : 31 - 41
  • [27] Some identities related to degenerate Bernoulli and degenerate Euler polynomials
    Kim, Taekyun
    Kim, Dae San
    Kim, Wonjoo
    Kwon, Jongkyum
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 882 - 897
  • [28] Symmetric Identities for Euler Polynomials
    Yong Zhang
    Zhi-Wei Sun
    Hao Pan
    Graphs and Combinatorics, 2010, 26 : 745 - 753
  • [29] Symmetric Identities for Euler Polynomials
    Zhang, Yong
    Sun, Zhi-Wei
    Pan, Hao
    GRAPHS AND COMBINATORICS, 2010, 26 (05) : 745 - 753
  • [30] Frobenious-Euler Type Polynomials Related to Hermite-Bernoulli Polynomials
    Kurt, Burak
    Simsek, Yilmaz
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389