State Estimation for Discrete-Time Markov Jump Linear Systems Based on Orthogonal Projective Theorem

被引:13
作者
Liu, Wei [1 ,2 ]
Zhang, Huaguang [2 ]
Wang, Zhanshan [2 ]
Sun, Qiuye [2 ]
机构
[1] Henan Polytech Univ, Sch Elect Engn & Automat, Jiaozuo 454000, Peoples R China
[2] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110004, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete-time; Markov jump; orthogonal projective theorem; state estimation; ALGORITHM;
D O I
10.1007/s12555-012-0523-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, state estimation problem for discrete-time Markov jump linear systems is considered. Based on orthogonal projective theorem, a novel suboptimal algorithm for state estimate of discrete-time Markov jump linear systems in the sense of minimum mean square error estimate is proposed. The proposed suboptimal algorithm is recursive and finite-dimensionally computable. Computer simulations are carried out to evaluate the performance of the proposed suboptimal algorithm.
引用
收藏
页码:1049 / 1054
页数:6
相关论文
共 12 条
[1]   ON STATE ESTIMATION IN SWITCHING ENVIRONMENTS [J].
ACKERSON, GA ;
FU, KS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1970, AC15 (01) :10-+
[2]  
[Anonymous], 1996, ESTIMATION TRACKING
[3]   THE INTERACTING MULTIPLE MODEL ALGORITHM FOR SYSTEMS WITH MARKOVIAN SWITCHING COEFFICIENTS [J].
BLOM, HAP ;
BARSHALOM, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (08) :780-783
[4]   STATE ESTIMATION FOR DISCRETE-SYSTEMS WITH SWITCHING PARAMETERS [J].
CHANG, CB ;
ATHANS, M .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1978, 14 (03) :418-424
[5]   LINEAR MINIMUM MEAN-SQUARE ERROR ESTIMATION FOR DISCRETE-TIME MARKOVIAN JUMP LINEAR-SYSTEMS [J].
COSTA, OLV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (08) :1685-1689
[6]   Stochastic sampling algorithms for state estimation of jump Markov linear systems [J].
Doucet, A ;
Logothetis, A ;
Krishnamurthy, V .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (02) :188-202
[7]   An improvement to the interacting multiple model (IMM) algorithm [J].
Johnston, LA ;
Krishnamurthy, V .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (12) :2909-2923
[8]  
Lewis Richard., 1986, OPTIMAL ESTIMATION I
[9]  
Li XR, 2005, IEEE T AERO ELEC SYS, V41, P1255, DOI 10.1109/TAES.2005.1561886
[10]  
Liu W., 2011, THESIS NE U SHENGYAN