Electrostatic Filtering of Polypeptides Through Membrane Protein Pores

被引:3
作者
Vikraman, Devika [1 ,2 ]
Krishnan, R. Smrithi [1 ,2 ]
Satheesan, Remya [1 ,2 ]
Das, Anjali Devi [1 ]
Mahendran, Kozhinjampara R. [1 ]
机构
[1] Rajiv Gandhi Ctr Biotechnol, Transdisciplinary Res Program, Membrane Biol Lab, Thiruvananthapuram 695014, India
[2] Manipal Acad Higher Educ, Manipal 576104, Karnataka, India
关键词
membrane proteins; peptides; cyclic sugars; binding kinetics; nanopore; OUTER-MEMBRANE; ALPHA-HEMOLYSIN; TRANSPORT; NANOPORES; MOLECULES; TRANSLOCATION; MALTOPORIN; DISCRIMINATION; PORINS;
D O I
10.1002/asia.202200891
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Naturally-occurring membrane proteins have been engineered as nanopore sensors for the single-molecule detection of various biochemical molecules. Here, we present a natural bacterial porin, CymA containing a dynamic component and densely packed charged residues in the pore, shaping a unique structural conformation and charge feature. Using single-channel recordings, we investigated the translocation of charged polypeptides through native CymA and truncated CymA lacking the dynamic element. Cationic polypeptides bind to the pore with high affinity, specifically at low salt conditions indicating an electrostatic charge and voltage-dependent translocation. Anionic peptides did not bind to the pore, confirming the selective binding of polypeptides with the pore due to their specific charge distribution. Further, the distinct peptide translocation kinetics between native and truncated indicated the role of the dynamic segment in molecular transport. We suggest that these natural membrane pores that permit the selective translocation of cationic polypeptides are advantageous for nanopore proteomics applications.
引用
收藏
页数:8
相关论文
共 57 条
[1]   Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation [J].
Asandei, Alina ;
Schiopu, Irina ;
Chinappi, Mauro ;
Seo, Chang Ho ;
Park, Yoonkyung ;
Luchian, Tudor .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (20) :13166-13179
[2]   Structural basis for chitin acquisition by marine Vibrio species [J].
Aunkham, Anuwat ;
Zahn, Michael ;
Kesireddy, Anusha ;
Pothula, Karunakar Reddy ;
Schulte, Albert ;
Basle, Arnaud ;
Kleinekathoefer, Ulrich ;
Suginta, Wipa ;
van den Berg, Bert .
NATURE COMMUNICATIONS, 2018, 9
[3]   Engineered transmembrane pores [J].
Ayub, Mariam ;
Bayley, Hagan .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2016, 34 :117-126
[4]   Bacterial Outer Membrane Porins as Electrostatic Nanosieves: Exploring Transport Rules of Small Polar Molecules [J].
Bajaj, Harsha ;
Gutierrez, Silvia Acosta ;
Bodrenko, Igor ;
Malloci, Giuliano ;
Scorciapino, Mariano Andrea ;
Winterhalter, Mathias ;
Ceccarelli, Matteo .
ACS NANO, 2017, 11 (06) :5465-5473
[5]   Nanopore-Based Protein Identification [J].
Bakshloo, Mazdak Afshar ;
Kasianowicz, John J. ;
Pastoriza-Gallego, Manuela ;
Mathe, Jerome ;
Daniel, Regis ;
Piguet, Fabien ;
Oukhaled, Abdelghani .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (06) :2716-2725
[6]   Stochastic sensors inspired by biology [J].
Bayley, H ;
Cremer, PS .
NATURE, 2001, 413 (6852) :226-230
[7]   Nanopore Sequencing: From Imagination to Reality [J].
Bayley, Hagan .
CLINICAL CHEMISTRY, 2015, 61 (01) :25-31
[8]   Multiple rereads of single proteins at single-amino acid resolution using nanopores [J].
Brinkerhoff, Henry ;
Kang, Albert S. W. ;
Liu, Jingqian ;
Aksimentiev, Aleksei ;
Dekker, Cees .
SCIENCE, 2021, 374 (6574) :1509-+
[9]   Single-molecule DNA detection with an engineered MspA protein nanopore [J].
Butler, Tom Z. ;
Pavlenok, Mikhail ;
Derrington, Ian M. ;
Niederweis, Michael ;
Gundlach, Jens H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (52) :20647-20652
[10]   Functionalised nanopores: chemical and biological modifications [J].
Cairns-Gibson, Dominic F. ;
Cockroft, Scott L. .
CHEMICAL SCIENCE, 2022, 13 (07) :1869-1882