Understanding the Phase Behavior of Coarse-Grained Model Lipid Bilayers through Computational Calorimetry

被引:65
作者
Rodgers, Jocelyn M. [1 ]
Sorensen, Jesper [2 ,3 ,4 ]
de Meyer, Frederick J. -M. [5 ,6 ]
Schiott, Birgit [2 ,3 ,4 ]
Smit, Berend [5 ,6 ,7 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[2] Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus C, Denmark
[3] Aarhus Univ, Ctr Insoluble Prot Struct inSPIN, DK-8000 Aarhus C, Denmark
[4] Aarhus Univ, Dept Chem, DK-8000 Aarhus C, Denmark
[5] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
关键词
MOLECULAR-DYNAMICS; MESOSCOPIC SIMULATION; FORCE-FIELD; CHOLESTEROL; TRANSITIONS; TEMPERATURE; THERMODYNAMICS; VESICLES;
D O I
10.1021/jp207837v
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the phase behavior of saturated lipids as a function of temperature and tail length for two coarse-grained models: the soft-repulsive model typically employed with dissipative particle dynamics (DPD) and the MARTINI model. We characterize the simulated transitions through changes in structural properties, and we introduce a computational method to monitor changes in enthalpy, as is done experimentally with differential scanning calorimetry. The lipid system experimentally presents four different bilayer phases - subgel, gel, ripple, and fluid - and the DPD model describes all of these phases structurally while MARTINI describes a single order disorder transition between the gel and the fluid phases. Given both models' varying degrees of success in displaying accurate structural and thermodynamic signatures, there is an overall satisfying extent of agreement for the coarse-grained models. We also study the lipid dynamics displayed by these models for the various phases, discussing this dynamics with relation to fidelity to experiment and computational efficiency.
引用
收藏
页码:1551 / 1569
页数:19
相关论文
共 50 条
  • [31] A reactive coarse-grained model for polydisperse polymers
    Deng, Binghui
    Shi, Yunfeng
    POLYMER, 2016, 98 : 88 - 99
  • [32] Development of a transferable coarse-grained model of polydimethylsiloxane
    Cambiaso, Sonia
    Rasera, Fabio
    Rossi, Giulia
    Bochicchio, Davide
    SOFT MATTER, 2022, 18 (40) : 7887 - 7896
  • [33] DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations
    Wang, Yin
    Gkeka, Paraskevi
    Fuchs, Julian E.
    Liedl, Klaus R.
    Cournia, Zoe
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2016, 1858 (11): : 2846 - 2857
  • [34] A coarse-grained model for capturing the helical behavior of isotactic polypropylene
    Sigalas, Nikolaos, I
    Anogiannakis, Stefanos D.
    Theodorou, Doros N.
    Lyulin, Alexey, V
    SOFT MATTER, 2022, 18 (15) : 3076 - 3086
  • [35] Coarse-grained mechanochemical model for simulating the dynamic behavior of microtubules
    Ji, Xiang-Ying
    Feng, Xi-Qiao
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [36] Phase behaviour of coarse-grained fluids
    Sokhan, V. P.
    Seaton, M. A.
    Todorov, I. T.
    SOFT MATTER, 2023, 19 (30) : 5824 - 5834
  • [37] An implicit solvent coarse-grained lipid model with correct stress profile
    Sodt, Alex J.
    Head-Gordon, Teresa
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (20)
  • [38] Molecular Dynamics Simulations of DPPC Bilayers Using "LIME", a New Coarse-Grained Model
    Curtis, Emily M.
    Hall, Carol K.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (17) : 5019 - 5030
  • [39] Understanding the Structure and Rheology of Galactomannan Solutions with Coarse-Grained Modeling
    Pablo, Juan J. de
    Liang, Heyi
    Webb, Michael A.
    Chawathe, Manasi
    Bendejacq, Denis
    MACROMOLECULES, 2023, 56 (01) : 177 - 187
  • [40] Evaluating Coarse-Grained MARTINI Force-Fields for Capturing the Ripple Phase of Lipid Membranes
    Sharma, Pradyumn
    Desikan, Rajat
    Ayappa, K. Ganapathy
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (24) : 6587 - 6599