Hydrogen-Bond Relays in Concerted Proton-Electron Transfers

被引:88
作者
Bonin, Julien [1 ]
Costentin, Cyrille [1 ]
Robert, Marc [1 ]
Saveant, Jean-Michel [1 ]
Tard, Cedric [1 ]
机构
[1] Univ Paris Diderot, Lab Electrochim Mol, Unite Mixte Rech Univ CNRS 7591, F-75205 Paris 13, France
关键词
WATER; OXIDATION; ACCEPTOR; ION;
D O I
10.1021/ar200132f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reaction mechanisms in which electron and proton transfers are coupled are central to a huge number of processes, both natural and synthetic. Moreover, most of the new approaches to address modem energy challenges involve proton-coupled electron transfer (PCET). Recent research has focused on the possibility that the two steps are concerted, that is, concerted proton electron transfer ((PET) reactions, rather than stepwise pathways in which proton transfer precedes (PET) or follows (EPT) electron transfer. (PET pathways have the advantage of bypassing the high-energy intermediates of stepwise pathways, although this thermodynamic benefit may have a kinetic cost. Concerted processes require short distances between the group being oxidized and the proton acceptor (and vice versa for a reduction process), which usually involves the formation of a hydrogen bond. Unlike the electron in outer-sphere electron-transfer reactions, the distance a proton may travel in a (PET is therefore rather limited. The idea has recently emerged, however, that this distance may be substantially increased via a H-bond relay located between the electron-transfer-triggered proton source and the proton acceptor. Generally speaking, the relay is a group bearing a H atom able to accept a H-bond from the moiety being oxidized and, at the same time, to form a H-bond with the proton-accepting group without going through a protonated intermediate. Although these molecules do not retain all the properties of chains of water molecules engaged in Grotthuss-type transport of a proton, the OH group in these molecules does possess a fundamental property of water molecules: namely, it is both a hydrogen-bond acceptor and a hydrogen-bond donor. Despite centuries of study, the mechanisms of proton movement in water remain active experimental and theoretical research areas, but so far with no connection to CPET reactions. In this Account, we bring together recent results concerning (i) the oxidative response of molecules containing a H-bond relay and (ii) the oxidation of phenol with water (in water) as the proton acceptor. In the first case, a nondestructive electrochemical method (cydic voltammetry) was used to investigate the oxidation of phenol molecules containing one H-bond relay and an amine proton acceptor compared with a similar amino phenol deprived of relay. In the second, the kinetics of phenol oxidation with water (in water) as proton acceptor is contrasted with that of conventional proton acceptors (such as hydrogen phosphate and pyridine) to afford evidence of the concerted nature of Grotthuss-type proton displacement with electron transfer. First indications were provided by the same electrochemical method, whereas a more complete kinetic characterization was obtained from laser flash photolysis. Older electrochemical results concerning the reduction of superoxide ion in the presence of water are also examined. The result is a timely picture of current insight into concerted mechanisms involving electron transfer coupled with proton transport over simple H-bond relays and over H-bond networks.
引用
收藏
页码:372 / 381
页数:10
相关论文
共 28 条
[1]  
[Anonymous], ACC CHEM RES
[2]  
[Anonymous], 2010, Chem. Rev, V110, P6937
[3]   Theoretical Analysis of Proton Relays in Electrochemical Proton-Coupled Electron Transfer [J].
Auer, Benjamin ;
Fernandez, Laura E. ;
Hammes-Schiffer, Sharon .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (21) :8282-8292
[4]   Pyridine as proton acceptor in the concerted proton electron transfer oxidation of phenol [J].
Bonin, Julien ;
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2011, 9 (11) :4064-4069
[5]   Water (in Water) as an Intrinsically Efficient Proton Acceptor in Concerted Proton Electron Transfers [J].
Bonin, Julien ;
Costentin, Cyrille ;
Louault, Cyril ;
Robert, Marc ;
Saveant, Jean-Michel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (17) :6668-6674
[6]   Intrinsic reactivity and driving force dependence in concerted proton-electron transfers to water illustrated by phenol oxidation [J].
Bonin, Julien ;
Costentin, Cyrille ;
Louault, Cyril ;
Robert, Marc ;
Routier, Mathilde ;
Saveant, Jean-Michel .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (08) :3367-3372
[7]   Electrochemical and homogeneous proton-coupled electron transfers:: Concerted pathways in the one-electron oxidation of a phenol coupled with an intramolecular amine-driven proton transfer [J].
Costentin, C ;
Robert, M ;
Savéant, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (14) :4552-4553
[8]   Electrochemical concerted proton and electron transfers.: Potential-dependent rate constant, reorganization factors, proton tunneling and isotope effects [J].
Costentin, C ;
Robert, M ;
Savéant, JM .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 588 (02) :197-206
[9]   Adiabatic and non-adiabatic concerted proton-electron transfers. Temperature effects in the oxidation of intramolecularly hydrogen-bonded phenols [J].
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (32) :9953-9963
[10]   H-bond relays in proton-coupled electron transfers. Oxidation of a phenol concerted with proton transport to a distal base through an OH relay [J].
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel ;
Tard, Cedric .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (12) :5353-5358