On modified hybrid steepest-descent method for variational inequalities

被引:0
作者
Yao, Yonghong [1 ]
Noor, Muhammad Aslam [2 ]
机构
[1] Tianjin Polytech Univ, Dept Math, Tianjin 300160, Peoples R China
[2] Comsats Inst Informat Technol, Dept Math, Islamabad, Pakistan
关键词
modified hybrid steepest-descent method; nonexpansive mappings; variatioial inequality; Hilbert space;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Assume a nonlinear operator F is strongly monotone and Lipschitzian on a nonempty closed convex Subset C of a real Hilbert space H. We devise an iterative algorithm Xn+1 = alpha x(n) + (1 - alpha)Tx(n) - lambda(n+1)mu F(Tx(n)), n >= 0, which generates a sequence {x(n)} from an arbitrary initial point x(0) is an element of H. The sequence {x(n)} is shown to converge in norm to the unique solution x* of a variational inequality under some mild conditions. Application to constrained pseudoinverse is included
引用
收藏
页码:139 / 148
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 1990, TOPICS METRIC FIXED
[2]   An interior point method with Bregman functions for the variational inequality problem with paramonotone operators [J].
Censor, Y ;
Iusem, AN ;
Zenios, SA .
MATHEMATICAL PROGRAMMING, 1998, 81 (03) :373-400
[3]  
Deutsch F, 1998, NUMER FUNC ANAL OPT, V19, P33, DOI 10.1080/01630569808816813
[4]  
Glowinski R, 1984, NUMERICAL METHODS NO
[5]  
IUSEM AN, 1994, COMPUT APPL MATH, V13, P103
[6]   VARIATIONAL-INEQUALITIES AND THE PRICING OF AMERICAN OPTIONS [J].
JAILLET, P ;
LAMBERTON, D ;
LAPEYRE, B .
ACTA APPLICANDAE MATHEMATICAE, 1990, 21 (03) :263-289
[7]  
LIONS PL, 1977, CR ACAD SCI A MATH, V284, P1357
[8]   Some developments in general variational inequalities [J].
Noor, MA .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 152 (01) :199-277
[9]  
Oden J.T., 1986, Qualitative methods in nonlinear mechanics
[10]  
STAMPACCHIA G, 1964, CR HEBD ACAD SCI, V258, P4413