Highly wrinkled palladium nanosheets as advanced electrocatalysts for the oxygen reduction reaction in acidic medium

被引:86
作者
Zhang, Lian Ying [1 ,3 ,4 ]
Guo, Chun Xian [2 ]
Cao, Haijie [1 ]
Wang, Shuo [1 ]
Ouyang, Yirui [1 ]
Xu, Binghui [1 ]
Guo, Peizhi [1 ]
Li, Chang Ming [2 ,3 ]
机构
[1] Qingdao Univ, Inst Mat Energy & Environm, Coll Mat Sci & Engn, Qingdao 266071, Peoples R China
[2] Suzhou Univ Sci & Technol, Inst Mat Sci & Devices, Suzhou 215011, Peoples R China
[3] Southwest Univ, Inst Clean Energy & Adv Mat, Chongqing Key Lab Adv Mat & Technol Clean Energie, Chongqing 400715, Peoples R China
[4] Third Mil Med Univ, State Key Lab Trauma Burn & Combined Injury, Chongqing 400038, Peoples R China
关键词
Pd nanosheets; Wrinkles; Compressive strain; Electrocatalyst; Oxygen reduction reaction; 2-DIMENSIONAL MATERIALS; PD NANOCRYSTALS; MASS ACTIVITY; ACTIVE-SITES; CATALYSTS; GRAPHENE; STRAIN; STABILITY; ULTRATHIN; NANOCAGES;
D O I
10.1016/j.cej.2021.133237
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Although great efforts have been devoted to developing Pd-based catalysts to take the place of Pt toward Oxygen reduction reaction (ORR) in acidic medium, the progress is notably slower than expected. In this work, highly wrinkled ultrathin Pd nanosheets are synthesized and further demonstrated as an advanced catalyst for ORR, holding higher catalytic activity, 26 mV more positive half-wave potential and better stability than the commercial Pt/C. Theoretical studies reveal that the compressive strain created from the wrinkles can crucially downshift d-band center of Pd to reduce the reaction barrier of the rate determining steps of ORR for fast kinetics. The modulated electronic structure of Pd by the introduction of wrinkles display a major role in improving the stability. This work offers a non-Pt, highly active, and stable catalyst for ORR by tailoring the geometric structure of Pd, while shedding a scientific light on the enhancement mechanism of a nanostructure on electrocatalytic activity and stability.
引用
收藏
页数:9
相关论文
共 65 条
[1]   The influence of wrinkling in reduced graphene oxide on their adsorption and catalytic properties [J].
Bai, Song ;
Shen, Xiaoping ;
Zhu, Guoxing ;
Yuan, Aihua ;
Zhang, Jun ;
Ji, Zhenyuan ;
Qiu, Dezhou .
CARBON, 2013, 60 :157-168
[2]   Half-Wave Potential or Mass Activity? Characterizing Platinum Group Metal-Free Fuel Cell Catalysts by Rotating Disk Electrodes [J].
Beltran, Diana E. ;
Litster, Shawn .
ACS ENERGY LETTERS, 2019, 4 (05) :1158-1161
[3]   Recent Advances in Two-Dimensional Materials beyond Graphene [J].
Bhimanapati, Ganesh R. ;
Lin, Zhong ;
Meunier, Vincent ;
Jung, Yeonwoong ;
Cha, Judy ;
Das, Saptarshi ;
Xiao, Di ;
Son, Youngwoo ;
Strano, Michael S. ;
Cooper, Valentino R. ;
Liang, Liangbo ;
Louie, Steven G. ;
Ringe, Emilie ;
Zhou, Wu ;
Kim, Steve S. ;
Naik, Rajesh R. ;
Sumpter, Bobby G. ;
Terrones, Humberto ;
Xia, Fengnian ;
Wang, Yeliang ;
Zhu, Jun ;
Akinwande, Deji ;
Alem, Nasim ;
Schuller, Jon A. ;
Schaak, Raymond E. ;
Terrones, Mauricio ;
Robinson, Joshua A. .
ACS NANO, 2015, 9 (12) :11509-11539
[4]   Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis [J].
Bu, Lingzheng ;
Zhang, Nan ;
Guo, Shaojun ;
Zhang, Xu ;
Li, Jing ;
Yao, Jianlin ;
Wu, Tao ;
Lu, Gang ;
Ma, Jing-Yuan ;
Su, Dong ;
Huang, Xiaoqing .
SCIENCE, 2016, 354 (6318) :1410-1414
[5]   Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis [J].
Bu, Lingzheng ;
Guo, Shaojun ;
Zhang, Xu ;
Shen, Xuan ;
Su, Dong ;
Lu, Gang ;
Zhu, Xing ;
Yao, Jianlin ;
Guo, Jun ;
Huang, Xiaoqing .
NATURE COMMUNICATIONS, 2016, 7
[6]   Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction [J].
Cai, Bin ;
Huebner, Rene ;
Sasaki, Kotaro ;
Zhang, Yuanzhe ;
Su, Dong ;
Ziegler, Christoph ;
Vukmirovic, Miomir B. ;
Rellinghaus, Bernd ;
Adzic, Radoslav R. ;
Eychmueller, Alexander .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (11) :2963-2966
[7]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[8]   Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts [J].
Cao, Shaowen ;
Tao, Franklin ;
Tang, Yu ;
Li, Yuting ;
Yu, Jiaguo .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (17) :4747-4765
[9]   Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions [J].
Chandrasekaran, Sundaram ;
Ma, Dingtao ;
Ge, Yanqi ;
Deng, Libo ;
Bowen, Chris ;
Roscow, James ;
Zhang, Yan ;
Lin, Zhiqun ;
Misra, R. D. K. ;
Li, Jianqing ;
Zhang, Peixin ;
Zhang, Han .
NANO ENERGY, 2020, 77
[10]   Palladium-Based Nanomaterials: Synthesis and Electrochemical Applications [J].
Chen, Aicheng ;
Ostrom, Cassandra .
CHEMICAL REVIEWS, 2015, 115 (21) :11999-12044