A Robust Paramter-Free Thresholding Method for Image Segmentation

被引:28
作者
Cao, Xinhua [1 ]
Li, Taihao [2 ]
Li, Hongli [3 ]
Xia, Shunren [4 ]
Ren, Fuji [5 ]
Sun, Ye [6 ]
Xu, Xiaoyin [7 ]
机构
[1] Harvard Med Sch, Dept Radiol, Boston Childrens Hosp, Boston, MA 02115 USA
[2] Shanghai Univ Med & Hlth Sci, Coll Med Instruments, Shanghai 201318, Peoples R China
[3] Third Mil Med Univ, Dept Histol & Embryol, Chongqing 400038, Peoples R China
[4] Zhejiang Univ, Key Lab Biomed Engn, Minist Educ, Hangzhou 310027, Zhejiang, Peoples R China
[5] Tokushima Univ, Dept Informat Sci & Intelligent Syst, Tokushima 7708501, Japan
[6] Harvard Med Sch, Dept Ophthalmol, Boston Childrens Hosp, Boston, MA 02115 USA
[7] Harvard Med Sch, Dept Radiol, Brigham & Womens Hosp, Boston, MA 02115 USA
基金
中国国家自然科学基金;
关键词
Segmentation; parameter-free thresholding; objective function; histogram; ALGORITHM; HISTOGRAM; ENTROPY;
D O I
10.1109/ACCESS.2018.2889013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we presented a new parameter-free thresholding method for image segmentation. In separating an image into two classes, the method employs an objective function that not only maximizes the between-class variance but also the distance between the mean of each class and the global mean of the image. The design of the objective function aims to circumvent the challenge that many existing techniques encounter when the underlying two classes have very different sizes or variances. The advantages of the new method are twofold. First, it is parameter-free, meaning that it can generate consistent results. Second, the new method has a simple form that makes it easy to adapt to different applications. We tested and compared the new method with the standard Otsu method, the maximum entropy method, and the 2D Otsu method on the simulated and real biomedical and photographic images and found that the new method can achieve a more accurate and robust performance.
引用
收藏
页码:3448 / 3458
页数:11
相关论文
共 39 条
[1]   Multilevel thresholding for image segmentation through a fast statistical recursive algorithm [J].
Arora, S. ;
Acharya, J. ;
Verma, A. ;
Panigrahi, Prasanta K. .
PATTERN RECOGNITION LETTERS, 2008, 29 (02) :119-125
[2]   Graph-Driven Diffusion and Random Walk Schemes for Image Segmentation [J].
Bampis, Christos G. ;
Maragos, Petros ;
Bovik, Alan C. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (01) :35-50
[3]  
Bernsen J., 1986, P 8 INT C PATT REC, V2, P1251
[4]   A New Iterative Triclass Thresholding Technique in Image Segmentation [J].
Cai, Hongmin ;
Yang, Zhong ;
Cao, Xinhua ;
Xia, Weiming ;
Xu, Xiaoyin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (03) :1038-1046
[5]  
Carlotto M. J., 1985, IEEE T PATTERN ANAL, P121
[6]  
Cheng HD, 2000, IEEE T IMAGE PROCESS, V9, P2071, DOI 10.1109/83.887975
[7]   Thresholding using two-dimensional histogram and fuzzy entropy principle [J].
Cheng, HD ;
Chen, YH ;
Jiang, XH .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (04) :732-735
[8]   Mean shift: A robust approach toward feature space analysis [J].
Comaniciu, D ;
Meer, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) :603-619
[9]   An efficient iterative algorithm for image thresholding [J].
Dong, Liju ;
Yu, Ge ;
Ogunbona, Philip ;
Li, Wanqing .
PATTERN RECOGNITION LETTERS, 2008, 29 (09) :1311-1316
[10]   Efficient graph-based image segmentation [J].
Felzenszwalb, PF ;
Huttenlocher, DP .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) :167-181