Two inequalities for conditional expectations and convergence results for filters

被引:5
作者
Crimaldi, I
Pratelli, L
机构
[1] Univ Bologna, Dept Math, I-40126 Bologna, Italy
[2] Accad Navale, Grp Insegnamento Matemat, I-57100 Livorno, Italy
关键词
conditional expectation; convergence in distribution; convergence in total variation;
D O I
10.1016/j.spl.2005.04.039
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we prove, first of all, two inequalities for conditional expectations, from which we easily deduce a result by Landers and Rogge. Then we prove convergence results for conditional expectations of the form P-n [f(X-n)vertical bar Y-n] to a conditional expectation of the form P[f(X)vertical bar Y]. We study, in particular, the case in which the random variables Y-n, Y are of the type h(n)(X-n), h(X). (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 162
页数:12
相关论文
共 5 条
[1]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[2]  
CRIMALDI I, 2003, IN PRESS BERNOULLI
[3]   CONVERGENCE IN DISTRIBUTION OF CONDITIONAL EXPECTATIONS [J].
GOGGIN, EM .
ANNALS OF PROBABILITY, 1994, 22 (02) :1097-1114
[4]  
GOGGIN EM, 1997, STOCH STOCH REP, V60, P85
[5]   JOINT CONVERGENCE OF CONDITIONAL EXPECTATIONS [J].
LANDERS, D ;
ROGGE, L .
MANUSCRIPTA MATHEMATICA, 1972, 6 (02) :141-&