On fractional integro-differential equations with state-dependent delay

被引:106
作者
Agarwal, Ravi P. [1 ,2 ]
de Andrade, Bruno [3 ]
Siracusa, Giovana [3 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[3] Univ Fed Pernambuco, Dept Matemat, BR-50540740 Recife, PE, Brazil
关键词
Fractional integro-differential equations; Sectorial operators; Resolvent of operators; State-dependent delay; FUNCTIONAL-DIFFERENTIAL EQUATIONS; PERIODIC-SOLUTIONS; EXISTENCE; IDENTIFICATION; APPROXIMATION;
D O I
10.1016/j.camwa.2011.02.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we provide sufficient conditions for the existence of mild solutions for a class of fractional integro-differential equations with state-dependent delay. A concrete application in the theory of heat conduction in materials with memory is also given. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1143 / 1149
页数:7
相关论文
共 47 条
[41]  
NECAS J, 1967, METHODES DIRECTES TH
[42]  
PUSS J, 1993, MONOGRAPHS MATH, V87
[43]   Asymptotic behavior of (a, k)-regularized resolvent families at zero [J].
Shaw, SY ;
Chen, JC .
TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (02) :531-542
[44]   COMPACT-SETS IN THE SPACE LP(O, T-B) [J].
SIMON, J .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1986, 146 :65-96
[45]   POSITIVE ALMOST-PERIODIC SOLUTIONS OF A STATE-DEPENDENT DELAY NONLINEAR INTEGRAL-EQUATION [J].
TORREJON, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (12) :1383-1416
[46]  
YONGKUN L, 2000, J MATH ANAL APPL, V246, P230
[47]  
何吉欢, 1999, [科技通报, Bulletin of Science and Technology], V15, P86