Reconstructions in ultrasound modulated optical tomography

被引:11
作者
Allmaras, Moritz [1 ]
Bangerth, Wolfgang [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2011年 / 19卷 / 06期
关键词
Optical tomography; ultrasound; diffusion approximation; inverse problem; biomedical imaging;
D O I
10.1515/JIIP.2011.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a mathematical model for ultrasound modulated optical tomography and present a simple reconstruction scheme for recovering the spatially varying optical absorption coefficient from scanning measurements with narrowly focused ultrasound signals. Computational results for this model show that the reconstruction of sharp features of the absorption coefficient is possible. A formal linearization of the model leads to an equation with a Fredholm operator, which explains the stability observed in our numerical experiments.
引用
收藏
页码:801 / 823
页数:23
相关论文
共 25 条
  • [1] [Anonymous], 2002, TEXTS APPL MATH
  • [2] [Anonymous], 1998, PARTIAL DIFFERENTIAL
  • [3] [Anonymous], 2001, GRUNDLEHREN MATH WIS
  • [4] [Anonymous], 1975, SOBOLEV SPACES
  • [5] [Anonymous], THESIS TEXAS A M U
  • [6] Optical tomography in medical imaging
    Arridge, SR
    [J]. INVERSE PROBLEMS, 1999, 15 (02) : R41 - R93
  • [7] deal. II - A general-purpose object-oriented finite element library
    Bangerth, W.
    Hartmann, R.
    Kanschat, G.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04):
  • [8] BANGERTH W, 2009, DEAL 2 DIFFERENTIAL
  • [9] Chandrasekhar S., 1960, Radiative Transfer
  • [10] Del Grosso G., 1976, B UNIONE MAT ITAL, V13-B, P876