Toward City-Scale Litter Monitoring Using Autonomous Ground Vehicles

被引:7
作者
Yin, Zhigang [1 ]
Olapade, Mayowa [1 ]
Liyanage, Mohan [1 ]
Dar, Farooq [1 ]
Zuniga, Agustin [2 ]
Motlagh, Naser Hossein [2 ]
Su, Xiang [3 ,4 ]
Tarkoma, Sasu [2 ]
Hui, Pan [2 ,5 ]
Nurmi, Petteri [2 ]
Flores, Huber [1 ]
机构
[1] Univ Tartu, EE-50090 Tartu, Estonia
[2] Univ Helsinki, Helsinki 00100, Finland
[3] Univ Sci & Technol, N-7491 Trondheim, Norway
[4] Univ Oulu, Oulu 90570, Finland
[5] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
基金
芬兰科学院;
关键词
Monitoring; Cleaning; Urban areas; Cameras; Pipelines; Object recognition; Drones;
D O I
10.1109/MPRV.2022.3152926
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Littering is a significant challenge for environmental sustainability and a major burden for cities and densely populated areas. Current solutions for litter monitoring, such as litter watch campaigns and city-operated litter collection, are costly and challenging to conduct at a large scale. This article presents a vision for using autonomous ground vehicles (AGVs) for litter monitoring and removal and introduces a mechanism for AGVs that uses thermal dissipation resulting from sunlight to identify and remove litter objects. We identify and highlight key challenges for deploying the envisioned solution on a city scale, and demonstrate the feasibility of the solution through extensive experiments.
引用
收藏
页码:74 / 83
页数:10
相关论文
共 17 条
[1]  
Aral RA, 2018, IEEE INT CONF BIG DA, P2058, DOI 10.1109/BigData.2018.8622212
[2]  
Chaudhary AH, 2021, INT J CONSUM STUD, V45, P478, DOI [10.1049/nde2.12011, 10.1111/ijcs.12638]
[3]   Characterization of seafloor litter on Mediterranean shallow coastal waters: Evidence from Dive Against Debris®, a citizen science monitoring approach [J].
Consli, Pierpaolo ;
Scotti, Gianfranco ;
Romeo, Teresa ;
Fossi, Maria Cristina ;
Esposito, Valentina ;
D'Alessandro, Michela ;
Battaglia, Pietro ;
Galgani, Francois ;
Figurella, Fabio ;
Pragnell-Raasch, Hannah ;
Andaloro, Franco .
MARINE POLLUTION BULLETIN, 2020, 150
[4]   YOLO TrashNet: Garbage Detection in Video Streams [J].
De Carolis, Berardina ;
Ladogana, Francesco ;
Macchiarulo, Nicola .
2020 IEEE INTERNATIONAL CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS), 2020,
[5]   Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging [J].
Gundupalli, Sathish Paulraj ;
Hait, Subrata ;
Thakur, Atul .
WASTE MANAGEMENT, 2017, 70 :13-21
[6]  
Huth F, 2011, NAT MATER, V10, P352, DOI [10.1038/NMAT3006, 10.1038/nmat3006]
[7]   GEESE: Edge computing enabled by UAVs [J].
Liyanage, Mohan ;
Dar, Farooq ;
Sharma, Rajesh ;
Flores, Huber .
PERVASIVE AND MOBILE COMPUTING, 2021, 72
[8]   Field test of beach litter assessment by commercial aerial drone [J].
Lo, Hoi-Shing ;
Wong, Leung-Chun ;
Kwok, Shu-Hin ;
Lee, Yan-Kin ;
Po, Beverly Hoi-Ki ;
Wong, Chun-Yuen ;
Tam, Nora Fung-Yee ;
Cheung, Siu-Gin .
MARINE POLLUTION BULLETIN, 2020, 151
[9]   The utilization of waste plastics in asphalt pavements: A review [J].
Ma, Yuetan ;
Zhou, Hongyu ;
Jiang, Xi ;
Polaczyk, Pawel ;
Xiao, Rui ;
Zhang, Miaomiao ;
Huang, Baoshan .
CLEANER MATERIALS, 2021, 2
[10]   Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe [J].
Malinauskaite, J. ;
Jouhara, H. ;
Czajczynska, D. ;
Stanchev, P. ;
Katsou, E. ;
Rostkowski, P. ;
Thorne, R. J. ;
Colon, J. ;
Ponsa, S. ;
Al-Mansour, F. ;
Anguilano, L. ;
Krzyzynska, R. ;
Lopez, I. C. ;
Vlasopoulos, A. ;
Spencer, N. .
ENERGY, 2017, 141 :2013-2044