Air-breathing electric propulsion: Flight envelope identification and development of control for long-term orbital stability

被引:30
作者
Tisaev, M. [1 ]
Ferrato, E. [2 ]
Giannetti, V [2 ]
Paissoni, C. [2 ]
Baresi, N. [1 ]
Fabris, A. Lucca [1 ]
Andreussi, T. [2 ]
机构
[1] Univ Surrey, Surrey Space Ctr, Guildford, Surrey, England
[2] SITAEL SpA, I-56121 Pisa, Italy
基金
欧盟地平线“2020”;
关键词
Air-breathing electric propulsion; ABEP; Frozen orbit; VLEO; AETHER;
D O I
10.1016/j.actaastro.2021.11.011
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Air-breathing electric propulsion (ABEP) enables long duration missions at very low orbital altitudes through the use of drag compensation. A system-level spacecraft model is developed, using the interaction between thruster, intake and solar arrays, and coupled to a calculation of the drag. A quadratic solution is found for specific impulse and evaluated to identify the thruster performance required for drag-compensation at varying altitudes. An upper altitude limit around 190 km is based on a minimum thruster propellant density, resulting in required thruster performance values of I-sp > 3000 s and T/P > 8 mN/kW for a realistic ABEP spacecraft. The orbit of an air-breathing spacecraft is propagated with time, which highlights the prescribed orbit eccentricity due to non-spherical gravity and therefore an increased variability in the atmospheric conditions. A thruster control law is introduced which avoids a divergent altitude behaviour by preventing thruster firings around the orbit periapsis, as well as adding robustness against atmospheric changes due to season and solar activity. Through the use of an initial frozen orbit, thruster control and an augmented T/P, a stable long-term profile is demonstrated based on the performance data of a gridded-ion thruster tested with atmospheric propellants. An initial mean semi-major axis altitude of 200 km relative to the equatorial Earth radius, a spacecraft mass of 200 kg, I-sp = 5455 s and T/P = 23 mN/kW, results in an altitude range of around 10 km at altitudes of 160-183 km during a period of medium to high solar activity.
引用
收藏
页码:374 / 393
页数:20
相关论文
共 37 条
[1]  
Anderson J., 2016, Fundamentals of Aerodynamics, V6th ed.
[2]  
Andreussi T., 2019, Proceedings of the AIAA Propulsion and Energy 2019 Forum, DOI [10.2514/6.2019-3995, DOI 10.2514/6.2019-3995]
[3]  
Andreussi T, 2018, SPACE PROPULSION 201
[4]  
Andreussi T, 2017, 35 INT EL PROP C ATL
[5]  
Barral S., 2015, P 34 INT EL PROP C K
[6]  
Bird G. A., 1994, MOL GAS DYNAMICS DIR
[7]   SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG [J].
BROUWER, D .
ASTRONOMICAL JOURNAL, 1959, 64 (09) :378-397
[8]  
Cifali G, 2011, 32 INT EL PROP C WIE
[9]   The benefits of very low earth orbit for earth observation missions [J].
Crisp, N. H. ;
Roberts, P. C. E. ;
Livadiotti, S. ;
Oiko, V. T. A. ;
Edmondson, S. ;
Haigh, S. J. ;
Huyton, C. ;
Sinpetru, L. A. ;
Smith, K. L. ;
Worrall, S. D. ;
Becedas, J. ;
Dominguez, R. M. ;
Gonzalez, D. ;
Hanessian, V ;
Molgaard, A. ;
Nielsen, J. ;
Bisgaard, M. ;
Chan, Y-A ;
Fasoulas, S. ;
Herdrich, G. H. ;
Romano, F. ;
Traub, C. ;
Garcia-Alminana, D. ;
Rodriguez-Donaire, S. ;
Sureda, M. ;
Kataria, D. ;
Outlaw, R. ;
Belkouchi, B. ;
Conte, A. ;
Perez, J. S. ;
Villain, R. ;
Heisserer, B. ;
Schwalber, A. .
PROGRESS IN AEROSPACE SCIENCES, 2020, 117
[10]  
Di Cara D., 2007, 30 INT EL PROP C