An Improved Approximation Algorithm for RESOURCE ALLOCATION

被引:26
作者
Calinescu, Gruia [1 ]
Chakrabarti, Amit [2 ]
Karloff, Howard [3 ]
Rabani, Yuval [4 ]
机构
[1] IIT, Dept Comp Sci, Chicago, IL 60616 USA
[2] Dartmouth Coll, Dept Comp Sci, Hanover, NH 03755 USA
[3] AT&T Labs Res, Florham Pk, NJ 07932 USA
[4] Hebrew Univ Jerusalem, Dept Comp Sci, IL-91904 Jerusalem, Israel
基金
以色列科学基金会;
关键词
Approximation algorithm; resource allocation; call admission control; BANDWIDTH;
D O I
10.1145/2000807.2000816
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of finding a most profitable subset of n given tasks, each with a given start and finish time as well as profit and resource requirement, that at no time exceeds the quantity B of available resource. We show that this NP-hard RESOURCE ALLOCATION problem can be (1/2 - epsilon)-approximated in randomized polynomial time, which improves upon earlier approximation results.
引用
收藏
页数:7
相关论文
共 9 条
[1]   SCHEDULING JOBS WITH FIXED START AND END TIMES [J].
ARKIN, EM ;
SILVERBERG, EB .
DISCRETE APPLIED MATHEMATICS, 1987, 18 (01) :1-8
[2]   A unified approach to approximating resource allocation and scheduling [J].
Bar-Noy, A ;
Bar-Yehuda, R ;
Freund, A ;
Naor, J ;
Schieber, B .
JOURNAL OF THE ACM, 2001, 48 (05) :1069-1090
[3]  
Calinescu G., 2002, Integer Programming and Combinatorial Optimization. 9th International IPCO Conference Proceedings (Lecture Notes in Computer Science Vol.2337), P401
[4]  
Chen B, 2002, IIE TRANS, V34, P501, DOI 10.1023/A:1013535723204
[5]   MAXIMIZING THE VALUE OF A SPACE MISSION [J].
HALL, NG ;
MAGAZINE, MJ .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1994, 78 (02) :224-241
[6]  
Leonardi S, 2000, LECT NOTES COMPUT SC, V1974, P409
[7]   A FASTER STRONGLY POLYNOMIAL MINIMUM COST FLOW ALGORITHM [J].
ORLIN, JB .
OPERATIONS RESEARCH, 1993, 41 (02) :338-350
[8]  
PHILLIPS C. A., 2000, J SCHEDULING, V3, P365, DOI DOI 10.1002/1099-1425(200011/12)3:6<365::AID-JOS56>3.0.CO
[9]  
2-P