The group ring of SL2(p2) over the p-adic integers

被引:3
作者
Nebe, G [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math B, D-52062 Aachen, Germany
关键词
D O I
10.1006/jabr.1998.7565
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper describes the ring-theoretic structure of the group rings of SL2(p(2)) over the p-adic integers. (C) 1998 Academic Press.
引用
收藏
页码:593 / 613
页数:21
相关论文
共 50 条
[11]   THE FOURIER-TRANSFORM OF ORBITAL INTEGRALS ON SL2 OVER A P-ADIC FIELD [J].
SALLY, PJ ;
SHALIKA, JA .
LECTURE NOTES IN MATHEMATICS, 1984, 1041 :303-340
[12]   CONVOLUTIONS ON THE RING OF P-ADIC INTEGERS [J].
WOODCOCK, CF .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1979, 20 (AUG) :101-108
[13]   Whittaker models for SL2(F), F A p-ADIC field [J].
Johnson, Roberto ;
Pantoja, Jose .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (02) :579-586
[14]   IRREDUCIBLE P-ADIC REPRESENTATIONS OF OPEN SUBGROUPS OF SL2(ZP) [J].
ROBERT, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 298 (11) :237-240
[15]   A correspondence for the supercuspidal representations of (SL2(F))over-bar, F p-adic [J].
Joyner, D .
ARCHIV DER MATHEMATIK, 1999, 73 (05) :332-340
[16]   A classification ofmodule braces over the ring of p-adic integers [J].
Aragona, Riccardo ;
Gavioli, Norberto ;
Nozzi, Giuseppe .
RICERCHE DI MATEMATICA, 2025,
[17]   Codes Over the p-adic Integers [J].
Steven T. Dougherty ;
Young Ho Park .
Designs, Codes and Cryptography, 2006, 39 :65-80
[18]   Codes over the p-adic integers [J].
Dougherty, ST ;
Park, YH .
DESIGNS CODES AND CRYPTOGRAPHY, 2006, 39 (01) :65-80
[19]   Derived equivalence in SL2(p2) [J].
Chuang, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (07) :2897-2913
[20]   On modules over group rings of locally soluble groups for a ring of p-adic integers [J].
Dashkova, O. Yu. .
ALGEBRA & DISCRETE MATHEMATICS, 2009, (01) :32-43