Spin-dependent analysis of homogeneous and inhomogeneous exciton decoherence in magnetic fields

被引:2
|
作者
Laurindo, V., Jr. [1 ]
Castro, E. D. Guarin [1 ]
Jacobsen, G. M. [1 ]
de Oliveira, E. R. C. [1 ]
Domenegueti, J. F. M. [1 ]
Alen, B. [2 ]
Mazur, Yu. I. [3 ]
Salamo, G. J. [3 ]
Marques, G. E. [1 ]
Marega, E., Jr. [4 ]
Teodoro, M. D. [1 ]
Lopez-Richard, V. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
[2] CSIC CEI UAM CSIC, CNM, IMN, E-28760 Madrid, Spain
[3] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
[4] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13566590 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会; 美国国家科学基金会; 欧盟地平线“2020”; 瑞典研究理事会;
关键词
QUANTUM-WELLS; PHOTOLUMINESCENCE LINEWIDTH; LINE-SHAPE; GAAS; LUMINESCENCE; ENERGY; RECOMBINATION; LIFETIMES; COHERENCE;
D O I
10.1103/PhysRevB.105.045414
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper discusses the combined effects of optical excitation power, interface roughness, lattice temperature, and applied magnetic fields on the spin coherence of excitonic states in GaAs/AlGaAs multiple quantum wells. For low optical powers, at lattice temperatures between 4 and 50 K, the scattering with acoustic phonons and short-range interactions appear as the main decoherence mechanisms. Statistical fluctuations of the band gap, however, become also relevant in this regime and we were able to deconvolute them from the decoherence contributions. The circularly polarized magneto-photoluminescence unveils a nonmonotonic tuning of the coherence for one of the spin components at low magnetic fields. This effect has been ascribed to the competition between short-range interactions and spin-flip scattering, modulated by the momentum relaxation time.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Spin-dependent exciton formation rates in π-conjugated oligomers and polymers
    Wohlgenannt, M
    Jiang, XM
    Vardeny, ZV
    SYNTHETIC METALS, 2003, 137 (1-3) : 1069 - 1071
  • [22] Spin-dependent exciton-exciton interaction in quantum wells under an electric field
    Aichmayr, G
    Jetter, M
    Viña, L
    Dickerson, J
    Camino, F
    Mendez, EE
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1999, 215 (01): : 223 - 228
  • [23] Spin-Dependent Exciton-Exciton Interactions in a Mixed Lead Halide Perovskite Crystal
    Grisard, Stefan
    Trifonov, Artur V.
    Hahn, Thilo
    Kuhn, Tilmann
    Hordiichuk, Oleh
    Kovalenko, Maksym V.
    Yakovlev, Dmitri R.
    Bayer, Manfred
    Akimov, Ilya A.
    ACS PHOTONICS, 2024, 11 (08): : 2930 - 2937
  • [24] Gadolinium Spin Decoherence Mechanisms at High Magnetic Fields
    Wilson, C. Blake
    Qi, Mian
    Han, Songi
    Sherwin, Mark S.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (47): : 10578 - 10584
  • [25] Measuring the spin-dependent lateral force in evanescent fields
    Liu, Lulu
    Kheifets, Simon
    Ginis, Vincent
    Di Donato, Andrea
    Amirzhan, Arman
    Capasso, Federico
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [26] Spin-dependent phenomena in semiconductors in strong electric fields
    Golub, L. E.
    Ivchenko, E. L.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [27] Theory of spin-dependent tunnelling in magnetic junctions
    Mathon, J
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2002, 35 (19) : 2437 - 2442
  • [28] Spin-dependent transport through magnetic nanojunctions
    Walczak, K
    Platero, G
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2006, 4 (01): : 30 - 41
  • [29] Magnetic shielding and exotic spin-dependent interactions
    Kimball, D. F. Jackson
    Dudley, J.
    Li, Y.
    Thulasi, S.
    Pustelny, S.
    Budker, D.
    Zolotorev, M.
    PHYSICAL REVIEW D, 2016, 94 (08)
  • [30] Spin-dependent tunneling effects on magnetic nanostructures
    Getzlaff, M
    Bode, M
    Kubetzka, A
    Pietzsch, O
    Wiesendanger, R
    CHINESE PHYSICS, 2001, 10 : S186 - S194