Complete subset regressions with large-dimensional sets of predictors

被引:28
作者
Elliott, Graham [1 ]
Gargano, Antonio [2 ]
Timmermann, Allan [3 ]
机构
[1] Univ Calif San Diego, Dept Econ, La Jolla, CA USA
[2] Univ Melbourne, Fac Business & Econ, Melbourne, Vic, Australia
[3] Univ Calif San Diego, Rady Sch Management, La Jolla, CA 92093 USA
关键词
Complete subset regression; Macroeconomic forecasts; Forecast combination; Factor models;
D O I
10.1016/j.jedc.2015.03.004
中图分类号
F [经济];
学科分类号
02 ;
摘要
We analyze the complete subset regression (CSR) approach of Elliott et al. (2013) in situations with many possible predictor variables. The CSR approach has the computational advantage that it can be applied even when the number of predictors exceeds the sample size. Theoretical results' establish that the CSR approach achieves variance reduction and Monte Carlo simulations show that it offers a favorable bias-variance trade-off in the presence of many weak predictor variables. Empirical applications to out-of-sample predictability of U.S. unemployment, GDP growth and inflation show that CSR combinations produce more accurate point forecasts than a dynamic factor approach or univariate regressions that do not exploit the information in the cross-section of predictors. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 110
页数:25
相关论文
共 18 条
[1]   Persistence in forecasting performance and conditional combination strategies [J].
Aiolfi, Marco ;
Timmermann, Allan .
JOURNAL OF ECONOMETRICS, 2006, 135 (1-2) :31-53
[2]  
[Anonymous], J BUSINESS EC STAT
[3]   COMPARING PREDICTIVE ACCURACY [J].
DIEBOLD, FX ;
MARIANO, RS .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1995, 13 (03) :253-263
[4]   Complete subset regressions [J].
Elliott, Graham ;
Gargano, Antonio ;
Timmermann, Allan .
JOURNAL OF ECONOMETRICS, 2013, 177 (02) :357-373
[5]  
Faust J, 2013, HBK ECON, P3, DOI 10.1016/B978-0-444-53683-9.00001-3
[6]   OPTIMAL PROPERTY OF PRINCIPAL COMPONENTS IN CONTEXT OF RESTRICTED LEAST-SQUARES [J].
FOMBY, TB ;
HILL, RC ;
JOHNSON, SR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1978, 73 (361) :191-193
[7]   MINIMUM VARIANCE PROPERTIES OF PRINCIPAL COMPONENT REGRESSION [J].
GREENBERG, E .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (349) :194-197
[8]   Shotgun Stochastic search for "Large p" regression [J].
Hans, Chris ;
Dobra, Adrian ;
West, Mike .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (478) :507-516
[9]  
Hansen B., 2005, J ECON, V146, P342
[10]  
Hansen B., 2005, ECONOMETRICA, V75, P1175