A Poisson ridge regression estimator

被引:145
作者
Mansson, Kristofer [2 ]
Shukur, Ghazi [1 ,2 ]
机构
[1] Linnaeus Univ, Dept Econ & Stat, Vaxjo, Sweden
[2] Jonkoping Univ, Dept Econ Finance & Stat, Jonkoping, Sweden
关键词
Poisson regression; Maximum likelihood; Ridge regression; MSE; Monte Carlo simulations; Multicollinearity; SIMULATION;
D O I
10.1016/j.econmod.2011.02.030
中图分类号
F [经济];
学科分类号
02 ;
摘要
The standard statistical method for analyzing count data is the Poisson regression model, which is usually estimated using maximum likelihood (ML) method. The ML method is very sensitive to multicollinearity. Therefore, we present a new Poisson ridge regression estimator (PRR) as a remedy to the problem of instability of the traditional ML method. To investigate the performance of the PRR and the traditional ML approaches for estimating the parameters of the Poisson regression model, we calculate the mean squared error (MSE) using Monte Carlo simulations. The result from the simulation study shows that the PRR method outperforms the traditional ML estimator in all of the different situations evaluated in this paper. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1475 / 1481
页数:7
相关论文
共 14 条
[1]   Developing ridge parameters for SUR model [J].
Alkhamisi, M. A. ;
Shukur, G. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (04) :544-564
[2]   Some modifications for choosing ridge parameters [J].
Alkhamisi, Mahdi ;
Khalaf, Ghadban ;
Shukur, Ghazi .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (11) :2005-2020
[3]   SIMULATION STUDY OF ALTERNATIVES TO ORDINARY LEAST-SQUARES [J].
DEMPSTER, AP ;
SCHATZOFF, M ;
WERMUTH, N .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1977, 72 (357) :77-93
[4]   A SIMULATION STUDY OF SOME RIDGE ESTIMATORS [J].
GIBBONS, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (373) :131-139
[5]   RIDGE REGRESSION - SOME SIMULATIONS [J].
HOERL, AE ;
KENNARD, RW ;
BALDWIN, KF .
COMMUNICATIONS IN STATISTICS, 1975, 4 (02) :105-123
[6]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[7]   Choosing ridge parameter for regression problems [J].
Khalaf, G ;
Shukur, G .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2005, 34 (05) :1177-1182
[8]   Performance of some new ridge regression estimators [J].
Kibria, BMG .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (02) :419-435
[9]   SIMULATION STUDY OF RIDGE AND OTHER REGRESSION ESTIMATORS [J].
LAWLESS, JF ;
WANG, P .
COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1976, A 5 (04) :307-323
[10]  
MANSSON K, 2010, COMMUNICATI IN PRESS