Materials and technical innovations in 3D printing in biomedical applications

被引:124
作者
Tetsuka, Hiroyuki [1 ,2 ]
Shin, Su Ryon [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Div Engn Med, Dept Med, 65 Lansdowne St, Cambridge, MA 02139 USA
[2] Toyota Motor North Amer, Toyota Res Inst North Amer, Future Res Dept, 1555 Woodridge Ave, Ann Arbor, MI 48105 USA
基金
美国国家卫生研究院;
关键词
MESENCHYMAL STROMAL CELLS; TISSUE CONSTRUCTS; CARTILAGE TISSUE; CROSS-LINKING; DIRECT-WRITE; TEXTURE CONTROL; SOFT MATTER; IN-VITRO; HYDROGELS; LADEN;
D O I
10.1039/d0tb00034e
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
3D printing is a rapidly growing research area, which significantly contributes to major innovations in various fields of engineering, science, and medicine. Although the scientific advancement of 3D printing technologies has enabled the development of complex geometries, there is still an increasing demand for innovative 3D printing techniques and materials to address the challenges in building speed and accuracy, surface finish, stability, and functionality. In this review, we introduce and review the recent developments in novel materials and 3D printing techniques to address the needs of the conventional 3D printing methodologies, especially in biomedical applications, such as printing speed, cell growth feasibility, and complex shape achievement. A comparative study of these materials and technologies with respect to the 3D printing parameters will be provided for selecting a suitable application-based 3D printing methodology. Discussion of the prospects of 3D printing materials and technologies will be finally covered.
引用
收藏
页码:2930 / 2950
页数:21
相关论文
共 50 条
  • [21] Nanogels for Pharmaceutical and Biomedical Applications and Their Fabrication Using 3D Printing Technologies
    Cho, Hyunah
    Jammalamadaka, Udayabhanu
    Tappa, Karthik
    MATERIALS, 2018, 11 (02):
  • [22] 3D printing with silk: considerations and applications
    DeBari, Megan K.
    Keyser, Mia N.
    Bai, Michelle A.
    Abbott, Rosalyn D.
    CONNECTIVE TISSUE RESEARCH, 2020, 61 (02) : 163 - 173
  • [23] 3D printing of hydrogels: Rational design strategies and emerging biomedical applications
    Li, Jinhua
    Wu, Chengtie
    Chu, Paul K.
    Gelinsky, Michael
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2020, 140
  • [24] 3D Printing of Functional Magnetic Materials: From Design to Applications
    Zhang, Chengqian
    Li, Xiangjia
    Jiang, Laiming
    Tang, Daofan
    Xu, Han
    Zhao, Peng
    Fu, Jianzhong
    Zhou, Qifa
    Chen, Yong
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (34)
  • [25] 3D printing to innovate biopolymer materials for demanding applications: A review
    Li, N.
    Qiao, D.
    Zhao, S.
    Lin, Q.
    Zhang, B.
    Xie, F.
    MATERIALS TODAY CHEMISTRY, 2021, 20 (20)
  • [26] 3D Printing of Living Responsive Materials and Devices
    Liu, Xinyue
    Yuk, Hyunwoo
    Lin, Shaoting
    Parada, German Alberto
    Tang, Tzu-Chieh
    Tham, Eleonore
    de la Fuente-Nunez, Cesar
    Lu, Timothy K.
    Zhao, Xuanhe
    ADVANCED MATERIALS, 2018, 30 (04)
  • [27] 3D printing with cellulose materials
    Wang, Qianqian
    Sun, Jianzhong
    Yao, Qian
    Ji, Chencheng
    Liu, Jun
    Zhu, Qianqian
    CELLULOSE, 2018, 25 (08) : 4275 - 4301
  • [28] A review on 3D printing in tissue engineering applications
    Mani, Mohan Prasath
    Sadia, Madeeha
    Jaganathan, Saravana Kumar
    Khudzari, Ahmad Zahran
    Supriyanto, Eko
    Saidin, Syafiqah
    Ramakrishna, Seeram
    Ismail, Ahmad Fauzi
    Faudzi, Ahmad Athif Mohd
    JOURNAL OF POLYMER ENGINEERING, 2022, 42 (03) : 243 - 265
  • [29] The role of three-dimensional (3D) printing in plastic and reconstructive surgery: innovations and applications
    Kalidindi, Sadhana
    EUROPEAN JOURNAL OF PLASTIC SURGERY, 2024, 47 (01)
  • [30] Emerging 3D Printing Strategies for Enzyme Immobilization: Materials, Methods, and Applications
    Shao, Yun
    Liao, Zhijun
    Gao, Bingbing
    He, Bingfang
    ACS OMEGA, 2022, 7 (14): : 11530 - 11543