Materials and technical innovations in 3D printing in biomedical applications

被引:130
作者
Tetsuka, Hiroyuki [1 ,2 ]
Shin, Su Ryon [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Div Engn Med, Dept Med, 65 Lansdowne St, Cambridge, MA 02139 USA
[2] Toyota Motor North Amer, Toyota Res Inst North Amer, Future Res Dept, 1555 Woodridge Ave, Ann Arbor, MI 48105 USA
基金
美国国家卫生研究院;
关键词
MESENCHYMAL STROMAL CELLS; TISSUE CONSTRUCTS; CARTILAGE TISSUE; CROSS-LINKING; DIRECT-WRITE; TEXTURE CONTROL; SOFT MATTER; IN-VITRO; HYDROGELS; LADEN;
D O I
10.1039/d0tb00034e
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
3D printing is a rapidly growing research area, which significantly contributes to major innovations in various fields of engineering, science, and medicine. Although the scientific advancement of 3D printing technologies has enabled the development of complex geometries, there is still an increasing demand for innovative 3D printing techniques and materials to address the challenges in building speed and accuracy, surface finish, stability, and functionality. In this review, we introduce and review the recent developments in novel materials and 3D printing techniques to address the needs of the conventional 3D printing methodologies, especially in biomedical applications, such as printing speed, cell growth feasibility, and complex shape achievement. A comparative study of these materials and technologies with respect to the 3D printing parameters will be provided for selecting a suitable application-based 3D printing methodology. Discussion of the prospects of 3D printing materials and technologies will be finally covered.
引用
收藏
页码:2930 / 2950
页数:21
相关论文
共 231 条
[51]   Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing [J].
Gaynor, Andrew T. ;
Meisel, Nicholas A. ;
Williams, Christopher B. ;
Guest, James K. .
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (06)
[52]   Multimaterial 4D Printing with Tailorable Shape Memory Polymers [J].
Ge, Qi ;
Sakhaei, Amir Hosein ;
Lee, Howon ;
Dunn, Conner K. ;
Fang, Nicholas X. ;
Dunn, Martin L. .
SCIENTIFIC REPORTS, 2016, 6
[53]   Active materials by four-dimension printing [J].
Ge, Qi ;
Qi, H. Jerry ;
Dunn, Martin L. .
APPLIED PHYSICS LETTERS, 2013, 103 (13)
[54]  
Gladman AS, 2016, NAT MATER, V15, P413, DOI [10.1038/NMAT4544, 10.1038/nmat4544]
[55]  
Gopinathan Janarthanan, 2018, Biomater Res, V22, P11
[56]   High-Resolution Patterned Cellular Constructs by Droplet-Based 3D Printing [J].
Graham, Alexander D. ;
Olof, Sam N. ;
Burke, Madeline J. ;
Armstrong, James P. K. ;
Mikhailova, Ellina A. ;
Nicholson, James G. ;
Box, Stuart J. ;
Szele, Francis G. ;
Perriman, Adam W. ;
Bayley, Hagan .
SCIENTIFIC REPORTS, 2017, 7
[57]   BIOMEDICINE Multivascular networks and functional intravascular topologies within biocompatible hydrogels [J].
Grigoryan, Bagrat ;
Paulsen, Samantha J. ;
Corbett, Daniel C. ;
Sazer, Daniel W. ;
Fortin, Chelsea L. ;
Zaita, Alexander J. ;
Greenfield, Paul T. ;
Calafat, Nicholas J. ;
Gounley, John P. ;
Ta, Anderson H. ;
Johansson, Fredrik ;
Randles, Amanda ;
Rosenkrantz, Jessica E. ;
Louis-Rosenberg, Jesse D. ;
Galie, Peter A. ;
Stevens, Kelly R. ;
Miller, Jordan S. .
SCIENCE, 2019, 364 (6439) :458-+
[58]   Digital micromirror device projection printing system for meniscus tissue engineering [J].
Grogan, Shawn P. ;
Chung, Peter H. ;
Soman, Pranav ;
Chen, Peter ;
Lotz, Martin K. ;
Chen, Shaochen ;
D'Lima, Darryl D. .
ACTA BIOMATERIALIA, 2013, 9 (07) :7218-7226
[59]   3-dimensional bioprinting for tissue engineering applications [J].
Gu B.K. ;
Choi D.J. ;
Park S.J. ;
Kim M.S. ;
Kang C.M. ;
Kim C.-H. .
Biomaterials Research, 20 (1)
[60]   Tunable mechanical properties through texture control of polycrystalline additively manufactured materials using adjoint-based gradient optimization [J].
Gu, Grace X. ;
Buehler, Markus J. .
ACTA MECHANICA, 2018, 229 (10) :4033-4044