Protein-Based Bioelectronics

被引:93
作者
Torculas, Maria [1 ,2 ,3 ]
Medina, Jethro [1 ,3 ,4 ]
Xue, Wei [1 ,3 ]
Hu, Xiao [1 ,5 ,6 ]
机构
[1] Rowan Univ, Dept Phys & Astron, 201 Mullica Hill Rd, Glassboro, NJ 08028 USA
[2] Rowan Univ, Dept Elect & Comp Engn, 201 Mullica Hill Rd, Glassboro, NJ 08028 USA
[3] Rowan Univ, Dept Mech Engn, 201 Mullica Hill Rd, Glassboro, NJ 08028 USA
[4] Rowan Univ, Dept Chem Engn, 201 Mullica Hill Rd, Glassboro, NJ 08028 USA
[5] Rowan Univ, Dept Biomed & Translat Sci, 201 Mullica Hill Rd, Glassboro, NJ 08028 USA
[6] Rowan Univ, Dept Biomed Engn, 201 Mullica Hill Rd, Glassboro, NJ 08028 USA
关键词
flexible electronics; silk; collagen; keratin; elastin; protein substrate; SILK FIBROIN; SPIDER SILK; ELECTRON-TRANSFER; IMMUNE-RESPONSES; IN-VITRO; COLLAGEN; FILMS; FABRICATION; DEVICES; WATER;
D O I
10.1021/acsbiomaterials.6b00119
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The desire for flexible electronics is booming, and development of bioelectronics for health monitoring, internal body procedures, and other biomedical applications is heavily responsible for the growing market. Most current fabrication techniques for flexible bioelectronics, however, do not use materials that optimize both biocompatibility and mechanical properties. This Review explores flexible electronic technologies, fabrication methods, and protein materials for biomedical applications. With favorable sustainability and biocompatibility, naturally derived proteins are an exceptional alternative to synthetic materials currently used. Many proteins can take on various forms, such as fibers, films, and scaffolds. The fabrication of resistors and organic solar cells on silk has already been proven, and optoelectronics made of collagen and keratin have also been explored. The flexibility and biocompatibility of these materials along with their proven performance in electronics make them ideal materials in the advancement of biomedical devices.
引用
收藏
页码:1211 / 1223
页数:13
相关论文
共 102 条
[1]   Elastin-based materials [J].
Almine, Jessica F. ;
Bax, Daniel V. ;
Mithieux, Suzanne M. ;
Nivison-Smith, Lisa ;
Rnjak, Jelena ;
Waterhouse, Anna ;
Wise, Steven G. ;
Weiss, Anthony S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (09) :3371-3379
[2]   Evaluation of thin film adhesion to a compliant substrate by the analysis of progressive buckling in the fragmentation test [J].
Andersons, J. ;
Tarasovs, S. ;
Leterrier, Y. .
THIN SOLID FILMS, 2009, 517 (06) :2007-2011
[3]   Elastin-Coated Biodegradable Photopolymer Scaffolds for Tissue Engineering Applications [J].
Barenghi, Rossella ;
Beke, Szabolcs ;
Romano, Ilaria ;
Gavazzo, Paola ;
Farkas, Balazs ;
Vassalli, Massimo ;
Brandi, Fernando ;
Scaglione, Silvia .
BIOMED RESEARCH INTERNATIONAL, 2014, 2014
[4]  
Batrachenko A., 2010, VISION PATH BIOELECT
[5]  
Bayrak A, 2013, TISSUE ENG PT A, V19, P1592, DOI [10.1089/ten.TEA.2012.0394, 10.1089/ten.tea.2012.0394]
[6]   Batteries used to power implantable biomedical devices [J].
Bock, David C. ;
Marschilok, Amy C. ;
Takeuchi, Kenneth J. ;
Takeuchi, Esther S. .
ELECTROCHIMICA ACTA, 2012, 84 :155-164
[7]   Integration of silk protein in organic and light-emitting transistors [J].
Capelli, R. ;
Amsden, J. J. ;
Generali, G. ;
Toffanin, S. ;
Benfenati, V. ;
Muccini, M. ;
Kaplan, D. L. ;
Omenetto, F. G. ;
Zamboni, R. .
ORGANIC ELECTRONICS, 2011, 12 (07) :1146-1151
[8]   Microcrimped Collagen Fiber-Elastin Composites [J].
Caves, Jeffrey M. ;
Kumar, Vivek A. ;
Xu, Wenjun ;
Naik, Nisarga ;
Allen, Mark G. ;
Chaikof, Elliot L. .
ADVANCED MATERIALS, 2010, 22 (18) :2041-+
[9]   Charge-selective recognition at fibroin-modified electrodes for analytical application [J].
Cheng, Q ;
Peng, TZ ;
Hu, XB ;
Yang, CF .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2005, 382 (01) :80-84
[10]   Nanocomposite Gold-Silk Nanofibers [J].
Cohen-Karni, Tzahi ;
Jeong, Kyung Jae ;
Tsui, Jonathan H. ;
Reznor, Gally ;
Mustata, Mirela ;
Wanunu, Meni ;
Graham, Adam ;
Marks, Carolyn ;
Bell, David C. ;
Langer, Robert ;
Kohane, Daniel S. .
NANO LETTERS, 2012, 12 (10) :5403-5406