Commutators and Lie isomorphisms of skew elements in prime operator algebras

被引:7
作者
Ayupov, SAA
Azamov, NA
机构
[1] Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent-143, 700143, F. Hodjaev str.
关键词
D O I
10.1080/00927879608825648
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1501 / 1520
页数:20
相关论文
共 16 条
[1]  
[Anonymous], THEORY OPERATOR ALGE
[2]   ANTI-AUTOMORPHISMS OF FACTORS AND LIE OPERATOR-ALGEBRAS [J].
AYUPOV, SA .
QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (182) :129-140
[3]  
AYUPOV SA, 1994012 IRMA STRASB, P1
[4]  
Baxter W.E., 1958, T AM MATH SOC, V87, P63
[5]   LIE ISOMORPHISMS IN PRIME-RINGS WITH INVOLUTION [J].
BEIDAR, KI ;
MARTINDALE, WS ;
MIKHALEV, AV .
JOURNAL OF ALGEBRA, 1994, 169 (01) :304-327
[6]   SKEW COMMUTATORS IN SIMPLE RINGS [J].
CHUANG, CL ;
LEE, PH .
JOURNAL OF ALGEBRA, 1982, 74 (01) :280-281
[7]   LIE AND JORDAN STRUCTURES IN SIMPLE, ASSOCIATIVE RINGS [J].
HERSTEIN, IN .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (06) :517-&
[8]  
HERSTEIN IN, 1969, TOPICS RING THEORY
[9]   AN EXAMPLE OF DIVISION RINGS WITH INVOLUTION [J].
LEE, PH .
JOURNAL OF ALGEBRA, 1982, 74 (01) :282-283
[10]   LIE ISOMORPHISMS OF SKEW ELEMENTS OF A PRIME RING WITH INVOLUTION [J].
MARTINDALE, WS .
COMMUNICATIONS IN ALGEBRA, 1976, 4 (10) :929-977